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Finitary Spacetime Sheaves of Quantum Causal
Sets: Curving Quantum Causality

A. Mallios1 and I. Raptis2,3

A locally finite, causal, and quantal substitute for a locally Minkowskian principal
fiber bundleP of modules of Cartan differential formsÄ over a bounded regionX of a
curvedC∞-smooth spacetime manifoldM with structure groupG that of orthochronous
Lorentz transformationsL+ :=SO(1, 3)↑, is presented.P is usually regarded as the
kinematical structure of classical Lorentzian gravity when the latter is viewed as a Yang-
Mills type of gauge theory of asl(2,C)-valued connection 1-formA. The mathematical
structure employed to model this replacement ofP is a principal finitary spacetime
sheaf EPn of quantum causal setsEÄn with structure groupGn, which is a finitary version
of the continuous groupG of local symmetries of General Relativity, and a finitary Lie
algebragn-valued connection 1-formAn on it, which is a section of its subsheafEÄ1

n.
An is physically interpreted as the dynamical field of a locally finite quantum causality,
whereas its associated curvatureFn as some sort of “finitary and causal Lorentzian
quantum gravity.”

. . .The locality principle seems to catch something fundamental about nature. . .Having
learned that the world need not be Euclidean in the large, the next tenable position is that
it must at least be Euclidean in the small, a manifold. The idea of infinitesimal locality
presupposes that the world is a manifold. But the infinities of the manifold (the number
of events per unit volume, for example) give rise to the terrible infinities of classical
field theory and to the weaker but still pestilential ones of quantum field theory. The
manifold postulate freezes local topological degrees of freedom which are numerous
enough to account for all the degrees of freedom we actually observe.

The next bridgehead is a dynamical topology, in which even the local topological
structure is not constant but variable.4 The problem of enumerating all topologies
of infinitely many points is so absurdly unmanageable and unphysical that dynamical
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topology virtually forces us to a more atomistic conception of causality and space-time
than the continuous manifold. . . (Finkelstein, 1991).

1. INTRODUCTION CUM PHYSICAL MOTIVATION

We are still in need of a cogent quantum theory of gravity. A quantum field-
theoretic scenario for General Relativity (GR) is assailed by nonrenormalizable
infinities coming from the singular values of fields that are assumed to propagate
and interact on a smooth spacetime manifold. Most likely, it is our modeling
of spacetime after aC∞-smooth differential manifold that is the culprit for this
unpleasant situation. We can hardly expect Nature to have any infinities, but we
can be almost certain that it is our own theoretical models of Her that are of limited
applicability and validity.

The present paper takes a first step towards arriving at an operationally sound,
locally finite, causal, and quantal model of classical Lorentzian gravity from a
finitary spacetime sheaf (finsheaf)-theoretic point of view. Classical Lorentzian
gravity may be regarded as a Yang-Mills type of gauge theory of asl(2,C)-
valued connection 1-formA and its kinematics is suitably formulated in a locally
Minkowskian principal fiber bundleP of modules of Cartan differential formsÄ
over a bounded regionX of a curvedC∞-smooth differential manifold spacetime
M with continuous structure groupG that of orthochronous Lorentz transforma-
tions L+ := SO(1, 3)↑. A principal finsheafEPn of quantum causal sets (qausets5)
EÄn having as structure group a finitary versionGn of L+, together with a fini-
tary spin-Lorentzian connectionAn which is agn-valued section of the subsheaf
EÄ1

n of reticular 1-forms of EPn, is suggested as a locally finite model, of strong
algebraic-operational character, of the dynamics of the quantum causal relations
between events and their local causal symmetries in a bounded regionX of a curved
smooth spacetime manifoldM . In short, we propose (EPn,An) as a finitary, causal,
and quantal replacement of the classical gravitational spacetime structure (P,A).6

The theoretical model (EPn,An) is supposed to be a preliminary, because kinemat-
ical, step in yet another attempt at viewing the problem of quantum gravity as the
dynamics of a local, finitistic, and quantal version of a variable causality or “causal
topology”7 (Bombelliet al., 1987; Finkelstein, 1988, 1989, 1991, 1996; Raptis, in
press, 2001, in preparation; Raptis and Zapatrin, in press; Sorkin, 1990a,b, 1995).

5 Since “causal sets” are coined “causets” for short by Sorkin (private communication), “quantum
causal sets” may be similarly nicknamed “qausets.”

6 Our scheme may be coined a “finitary and causal Lorentzian quantum gravity,” although it is perhaps
more precise to think ofEPn as a finitary, causal, and quantal substitute for the kinematical structure
P on which GR is cast as a gauge theory, rather than directly of GR on itper se. For instance, we will
go as far as to define curvatureFn on EPn, but we will not give an explicit expression of the dynami-
cal Einstein equations on it. The latter is postoponed to another paper (Raptis, in preparation-c).

7 See opening quotation above.
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In more detail, the continuous (i.e.,C0) topology of a bounded regionX of a
spacetime manifoldM has been successfully approximated by so-called “finitary
topological spaces” which are mathematically modeled after partially ordered sets
(posets) (Sorkin, 1991). The success of such coarse approximations of the topo-
logical spacetime continuum rests on the fact that an inverse system consisting of
finer-and-finer finitary posets possesses, at the maximum (finest) resolution ofX
into its point events, a limit space that is effectively homeomorphic toX (Sorkin,
1991).

Similarly, coarse approximations of the continuous (i.e.,C0) spacetime ob-
servables onX have been soundly modeled after so-called “finitary spacetime
sheaves”—“finsheaves” for short—which are structures consisting of continuous
functions onX that are locally homeomorphic to the finitary posets of Sorkin
(Raptis, 2000a). Here too, an inverse system of such finsheaves was seen to
“converge,” again at maximum refinement and localization ofX into its point
events, toS(X)—the sheaf ofC0-spacetime observables onX which is generated
by (the germs of) its continuous sections (Raptis, 2000a).

In (Raptis and Zapatrin, 2000), an algebraic quantization procedure of
Sorkin’s finitary poset substitutes for continuous spacetime topology was pre-
sented, first by associating with every such posetP a noncommutative Rota in-
cidence algebraÄ(P), then by quantally interpreting the latter’s structure. The
aforementioned limit of a net of such quantal incidence algebras was interpreted as
Bohr’s Correspondence Principle in the sense that the continuous spacetime man-
ifold topology emerges, as a classical structure, from some sort of decoherence of
the underlying discrete and coherently superposing quantum Rota-algebraic topo-
logical substrata (Raptis and Zapatrin, 2000, in press). The operationally prag-
matic significance of the latter, in contradistinction to the ideal and, because of
it, pathological8 event structure that the classical topological manifold model of
spacetime stands for, was also emphasized by Raptis and Zapatrin.

Furthermore, it has been argued (Raptis and Zapatrin, 2000, in press) that,
in view of the fact that theÄ(P)s were seen to be discrete differential manifolds
in the sense of Dimakiset al. (1995), not only the continuousC0-topological, but
also the smooth (i.e.,C∞) differential structure of classical spacetime, emerges
at the operationally ideal classical limit of finest resolution of a net of quantal
incidence algebras. Since only at this ideal classical limit of an inverse system of
such reticular quantum topological substrata the local structure of the differential
spacetime manifold emerges,9 the substrata were conceived as being essentially

8 Due to the unphysical infinities in the form of singularities from which the classical and quantum
field theories, which are defined on the operationally ideal and experimentally unrealistic spacetime
continuum, suffer (see opening quotation).

9 That is to say, the spacetime point event and the space of covariant directions tangent to it (i.e., its
cotangent space of differential forms).
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alocal structures (Raptis and Zapatrin, 2000), with this “a-locality” signifying
some sort of independence of these algebraic structures from the classical con-
ception of spacetime as a smooth background geometric base space. In a similar
way, the finsheaf-theoretic approach developed in (Raptis, 2000a), with its finitary
algebraic-operational character, strongly emphasizes the physical significance of
such a noncommitment to an inert background geometrical base spacetime mani-
fold, as well as its accordance with the general operational, ultimately “pragmatic”
(Finkelstein, 1996), philosophy of Quantum Theory (QT).

Moreover, at the end of (Raptis, 2000a), it was explicitly mentioned that by as-
suming further algebraic structure for the stalks of the aforementioned finsheaves,
as for instance by considering sheaves of incidence algebras over Sorkin’s finitary
topological posets, at the limit of maximum resolution or “fine-graining” of a net
of such finsheaves of Rota algebras, which can also be regarded as Bohr’s classi-
cal limit à la Raptis and Zapatrin (2000), the differential triad (X,Ä :=⊕iÄ

i ,d)
should emerge. The latter stands for the sheaf of modules of Cartan differen-
tial formsÄ on the smoothX, equipped with the nilpotent K¨ahler-Cartan dif-
ferential operatord which effects (sub)sheaf morphisms of the following sort
d: (X,Äi )→ (X,Äi+1) (Mallios, 1998a). Thus, a finsheaf of Rota incidence
algebras is expected to be a sound model of locally finite, as well as quantal,
“approximations” of the smooth spacetime observables—the classical spacetime
dynamical fields.10

Parenthetically, and with an eye towards the physical interpretation to be given
subsequently to our mathematical model, we should mention that the inverted com-
mas over the word “approximations” in the last sentence may be explained as fol-
lows: after the successful algebraic quantization of Sorkin’s discretized spacetimes
in (Raptis and Zapatrin, 2000), it has become clear that the resulting alocal quan-
tum topological incidence algebrasÄ(P) associated with the finitary topological
posetsP in (Sorkin, 1991) should not be thought of as approximations proper of the
classical smooth differential forms like their correspondingPs or the finsheaves
Sn in (Raptis, 2000a) actually approximate theC0-topological manifold structure
of classical spacetime, as if a geometric spacetime exists as a background base
space “out there.” Rather, they should be regarded as operationally pragmatic and
relatively autonomous quantum spacetime structures an inverse system of which
possesses an operationally ideal (i.e., unobservable in actual experiments) and
classical, in the sense of Bohr, limit structure isomorphic to the differential manifold

10We tacitly assume that the classical model for the kinematics of spacetime and the fields inhabiting,
dynamically propagating and interacting on it is that of a 4-dimensional differential (orC∞-smooth)
manifold M , with fiber spacesÄn of smooth Cartan exteriorn-forms attached at or soldered on its
point events. Physical fields are then modeled after cross-sections of this Cartan fiber bundleP of
smooth exterior forms (Baez and Muniain, 1994; G¨ockeler and Sch¨ucker, 1990; Von Westenholz,
1981).
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model of spacetime (Raptis and Zapatrin, 2000, in press). From this viewpoint,
the quantum topological incidence algebrasÄ(P) (and their qauset relatives in
(Raptis, 2000b)) are regarded as being physically fundamental (primary) and their
correspondence limit geometric point set manifold structure as being derivative
(secondary), ultimately, their emergent classical correspondent or infinite localiza-
tion energy limit space (Cole, 1972). Properly conceived, it is the classical theory
(model) that should be thought of as an approximation of the deeper quantum
theory (model), not the other way around (Finkelstein, 1996). Thus, “quantum
replacements” or “quantum substitutes” instead of “approximations” will be used
more often from now on to describe our finsheaves (of qausets), although it is fair
to say that such combinatorial structures were initially conceived as approxima-
tions proper of theC0-spacetime topology in (Raptis, 2000a), as it was originally
motivated by Sorkin (1991).

In toto, this nonacceptance of ours of spacetime as a dynamically inactive
smooth geometric receptacle of the physical fields or as a background stage that
supports their dynamical propagation, that is passively existing as a static state
space “out there” and whose structure is fixeda priori and forever by the theorist
independently of our experimental actions on or operations of observation of “it,”
is the essence of the operationally sound quantum physical semantics that we will
give to our algebraic finsheaf model in the present paper.

In GR—the classical theory of gravity which is based on the kinematical-
structural assumption that spacetime is a 4-dimensional pseudo-Riemannian man-
ifold M—the main dynamical variable is the smooth Lorentzian spacetime metric
gµν which is physically interpreted as the gravitational potential. The local relativ-
ity group of GR, in its original formulation in terms of the Lorentzian metricgµν ,
is the orthochronous Lorentz groupL+ := SO(1, 3)↑. GR may also be formulated
in terms of differential forms on the locally Minkowskian bundleP (Göckeler
and Sch¨ucker, 1990).11 Equivalently, in its gauge-theoretic spinorial formulation
(Baez and Muniain, 199412; Bergmann, 195713) gravity may be conceived as a type
of gauge theory of asl(2,C)-valued 1-formA—the spin-Lorentzian connection
field, which represents the gravitational gauge potential. A sound model for the

11See chapter on the Einstein-Cartan theory. We callP “the Cartan principal fiber bundle with structure
group the orthochronous Lorentz groupL+ of local invariances of GR.”

12We refer to Ashtekar’s modfication of the Palatini formulation of GR by using new spin variables
(Ashtekar, 1986). In this theory, only the self-dual partA+ of a spin-Lorentzian connectionA is
regarded as being physically significant. In (Raptis, in press) this is used as an example to argue
that the fundamental quantum time asymmetry expected of “the true quantum gravity” (Penrose,
1987) is already built into the kinematical structure of a locally finite, causal, and quantal version
of that theory modeled after curved finsheaves or schemes (Hartshorne, 1983; Shafarevich, 1994)
of qausets.

13In this theory,gµν is replaced by a field of four 2× 2 Pauli spin-matrices.
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kinematics of this theory is a principal fiber bundleP over (the regionX of)
theC∞-smooth spacetime manifoldM , with structure groupG = SL(2,C)14 and
a nonflat connection 1-formA taking values in the Lie algebrag= sl(2,C) of
G15 , totally, (X, P, G,A).16 Thus, by the discussion in the penultimate paragraph,
it follows that a principal finsheaf of quantum incidence algebras, together with
a nonflat connection taking values in their local symmetries, may be employed
to model a locally finite and quantal version of Lorentzian gravity in its gauge-
theoretic formulation on a smooth spacetime manifold.

However, there seem to bea priori two serious problems with such a model.
On the one hand, only Riemannian (i.e., positive definite) metric connections may
be “naturally” defined on discrete differential manifolds such as our Rota incidence
algebras (Dimakis and M¨uller-Hoissen, 1999), and on the other, the anticipated
classical limit sheaf or fiber bundle (X,Ä, d) is flat (Mallios, 1998a).17 The first
comes into conflict with the indefinite character of the local spacetime metric
of GR,18 thus also with its local relativity group19; whereas the second, with the
general relativistic conception of the gravitational field strength as the nonvanishing
curvature of spacetime.

One should not be discouraged, for there seems to be a way out of this double
impasse which essentially motivated us to consider finsheaves of qausets in the
first place. First, to deal with the “signature problem,” we must change physical

14A principal fiber bundle with structure groupG may also be called a “G-bundle” for short.
15Since locally in the group fiber (i.e., Lie algebra-wise in the fiber space) of theG-bundleP sl(2,C)

is isomorphic to the Lie algebrà+ = so(1, 3)↑ of the orthochronous Lorentz groupL+, P may
equivalently be thought of as having the latter as structure groupG. Due to this local isomor-
phismA is given the epithet “spin-Lorentzian” and the same symbolP is used above for both the
Cartan (Lorentzian) and the Bergmann (spin)G-bundles. Thus,P is called “the CartanBergmann
G-bundle.”

16The name “principal” is usually reserved only for the groupG-bundle or sheaf, whereas the vector
or algebra sheaf that carries it, in our caseÄ, is called “associated” (Mallios, 1998a). Here we use
one symbol,P, and one name, “principal,” for both theG-sheaf of orthochronous Lorentz trans-
formationsL+ and its associated locally Minkowskian sheaf of differential formsÄ. Conversely,
in section 4 we first defineÄ as an algebra sheaf and then we coin theG-sheaf of its Lorentz
symmetries “adjoint.” There should be no misunderstanding:Ä is associated withG, or vice versa,
G is adjoint toÄ, and together they constitute the principal sheafP. Nevertheless, we apologize to
the mathematical purist for this slight change in nomenclature.

17Dimakis and Müller-Hoissen (1999) also mention the fact that the (torsionless) Riemannian metric
connection∇ of the universal differential calculus on a discrete differential manifold is flat in that it
reduces to the nilpotent K¨ahler-Cartan differentiald whose curvatureR is zero, sinceR :=∇2 =
d2 = 0.

18In GR, the local metric fieldgµν is Lorentzian (of signature 2), not Euclidean (of trace 4).
19The group of local isometries of GR, at least in its spinorial gauge-theoretic formulation men-

tioned above, is taken to beSL(2,C)—the double cover of the orthochronous Lorentz group
L+ = SO(1, 3)↑ of local invariances ofgµν that also locally preserve the orientation of time, not
the 4-dimensional unimodular Euclidean rotations inSO(4). In this sense GR is a theory of (locally)
Lorentzian gravity.
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interpretation for the algebraic structure of the stalks of the aforementioned fin-
sheaf of quantal incidence algebras from “topological” to “causal.” This means that
we should consider finsheaves of the qausets in (Raptis, 2000b), rather than fin-
sheaves of the quantum discretized spacetime topologies in (Raptis and Zapatrin,
2000). Indeed, Sorkin (1995), in the context of constructing a plausible theoreti-
cal model for quantum gravity, convincingly argues for a physical interpretation
of finitary posets as locally finite causets (Bombelliet al., 1987; Sorkin, 1990a,b)
and against their interpretation as finite topological spaces or simplicial complexes
(Alexandrov, 1956a,b, 1961; Raptis and Zapatrin, 2000). Similar arguments against
a nonrelativistic, spatial conception of topology and for a temporal or causal one
which is also algebraically modeled with a quantum interpretation given to this
algebraic structure, like the quantum causal topology of the qausets in (Raptis,
2000b), are presented in (Finkelstein, 1988). Ancestors of the causet idea are the
classic works of Robb (1914), Alexandrov (1956a,b, 1967), and Zeeman (1964,
1967) which show that the topology and conformal geometry of Minkowski space
M, as well as its relativity groupL+ of global orthochronous Lorentz transforma-
tions modulo spacetime volume-preserving maps, can be determined by modeling
the causal relation between its events after a partial order. Similarly in spirit,
the derivation of the entire geometry of the Lorentzian spacetime manifold—the
kinematical structure of GR—(i.e., its topology, dimensionality, differential and
indefinite-Lorentzian metric structure) lies at the heart of the causet approach to
quantum gravity propounded in (Bombelliet al., 1987; Bombelli and Meyer, 1989;
Sorkin, 1990a,b, 1995).

On the other hand, causality as a partial order, although it solves the “signature
problem,” is unable to adequately address the second “curvature problem” men-
tioned above, since it determines, up to a conformal (i.e., volume) factor, the
Minkowski spaceM of Special Relativity (SR) and its Lorentz symmetries, which
is flat and its Lorentz isometries are global. Our way out of this second “curvature
impasse” involves a rather straightforward localization or gauging of the qausets
in (Raptis, 2000b), by considering a nonflat connectionAn on a finsheaf of such
quantally and causally interpreted incidence algebras, thus by emulating the work
of Mallios (1998a,b, in press, in preparation)20 that studies Yang-Mills guage con-
nections onG-sheaves of vector spaces and algebras in general. This gauging of
quantum causality translates in a finitary and quantal setting the fact that the clas-
sical theory of gravity, GR, may be regarded as SR localized or being gauged.21

This connection variable is supposed to represent the dynamics of an atomistic
local quantum causality as the latter is algebraically encoded stalk-wise in the
finsheaf (i.e., in the qausets that dwell in these stalks). The result may be regarded

20Albeit, in a finitary causal and quantal context.
21So that the spacetime metric, or its associated (i.e., metric) connection, become dynamical field

variables (Torretti, 1981) and are not fixed “trivial” constant entities throughout spacetime.
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as the first essential step towards formulating a finitary dynamical scenario for the
qauset stalks of the sheaf which, in turn, may be physically interpreted as a finitary
and causal model of the still incompletely or not even well formulated theory of
Lorentzian quantum gravity.

Equivalently, and in view of the sound operational interpretation given to
the topological incidence algebras in (Raptis and Zapatrin, 2000) as well as to
the topological finsheaves in (Raptis, 2000a), our model may be physically inter-
preted as locally finite and quantal replacements of the dynamics of the local causal
relations between events and their local causal symmetries22 in a limited (i.e., fi-
nite or bounded), by our own domain of experimental activity (i.e., laboratory)
(Raptis and Zapatrin, 2000), regionX of the smooth spacetime manifoldM . As
we mentioned above, the latter “exists” only as a “surrogate background space”
that helps one remember where the discreteness of our model comes from, but it
is not essential to the physical problem in focus. Again, the spacetime continuum,
as a “base space,” is only a geometrical scaffolding that supports our structures,23

but that should also be discarded after their essentially alocal-algebraic, quantal-
operational and causal (i.e., nonspatial, but temporal) nature is explicated and used
for our problem in focus. Then, the aforementioned correspondence principle for
quantal topological incidence algebras may be used on (an inverse system of)
the principal finsheaves of qausets and their nonflat spin-Lorentzian connections
in order to recover the classical spacetime structure on which GR is formulated,
as the classical theory of gravity, at the classical and operationally ideal limit
of infinite energy of resolution (Cole, 1972) (i.e., of infinite power of localiza-
tion) of spacetime into its point events. This classical kinematical limit spacetime
model for GR, as a gauge theory, is the one mentioned above, namely, a principal
fiber bundleP of modules of smooth Cartan differential formsÄ, over (a re-
gion X of) aC∞-smooth Lorentzian spacetime manifoldM , with structure group
G = SL(2,C) or its locally isomorphicSO(1, 3)↑, and a nonflatsl(2,C)-valued
gravitational gauge connection 1-formA on it which is a cross-section of itsÄ1

sub-bundle.
The present paper is organized as follows: in the next section we propose

and discuss in some detail finitary versions of the principles of Equivalence and
Locality of GR, as well as of their “corollaries,” the principles of Local Rela-
tivity and Local Superposition, that are expected to be “operative” at the locally
finite setting that we place our first step at modeling “finitary and causal Lorentzian
quantum gravity” after “curving quantum causality by gauging a principal finsheaf

22That is to say, the dynamics of local quantum causality or “local quantum causal topology” and its
symmetries.

23In the sense that “it avails itself to us as a topological space” by providing sufficient (but not nec-
essary!) conditions for the definition ofAn which is the main dynamical variable in our theoretical
scheme. See section 5.
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of qausets.”24 In section 3 we review the algebraic model of flat quantum causality
proposed in (Raptis, 2000b), namely, the qauset, and pronounce its characteristics
to be subsequently localized or gauged. In section 4 we recall the topological fin-
sheaves from (Raptis, 2000a), then we define finsheaves of qausets and their local
causal symmetries. At the end of the section, a sound operational interpretation
of finsheaves of qausets and their symmetries is given briefly, so that our theory
is shown to have a strong philosophical support as well. In section 5 we suggest
that for localizing or gauging and, as a result, curving quantum causality, a prin-
cipal finsheaf of qausets having as structure group a finitary version ofSO(1, 3)↑,
together with a discrete and local sort of a nonflat, spin-Lorentzian connection
An on it, is an operationally sound model.An is then physically interpreted as a
finitary, local, causal and quantal topological variable whose nonzero curvature
stands for a finitary, causal, and quantal model of Lorentzian gravity. We conclude
the paper by discussing the soundness of this finsheaf model of finitary and causal
Lorentzian quantum gravity, as well as some physico-mathematical issues that
derive from it.

2. PHYSICAL PRINCIPLES FOR FINITARY
LORENTZIAN QUANTUM GRAVITY

In this section we commence our endeavor to model connection and its associ-
ated curvature in a curved finitary quantum causal setting by establishing heuristic
physical principles that must be encoded in the very structure of our mathematical
model25 on which the dynamics of a locally finite quantum causality is going to
be founded in section 5. The four physical principles to be suggested below will
be seen to be the finitary and (quantum) causal analogues of the ones of Equiv-
alence, Locality, as well as their “corollary” principles of Local Relativity and
Local Superposition respectively, of GR which is formulated as a gauge theory in
the principal bundleP over a differential manifold spacetimeM . We have chosen
these principles from the classical theory of gravity, because they show precisely
in what way the latter is a type of gauge theory, and also because they will prepare
the reader for our localization or gauging and concomitant curving of qausets in
section 5.

The first physical principle from GR that we would like to adopt in our
inherently granular scenario, so that curvature may be easily implemented and
straightforwardly interpreted as gravity in such a finitary quantum causal context,

24As we said, the word “gauging” pertains to the aforementioned implementation of a nonflat gauge
connectionAn on the finsheaf in focus.

25The “principal finsheaf of qausets with a nonflat finitary spin-Lorentzian connection on it,” to be
built progressively in the next three sections.
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is that of equivalence (EP). We borrow from GR the following intuitively clear
version of the EP:

Classical Equivalence Principle (CEP): The curved spacetime of GR is locally
Minkowskian; thence flat. That is to say, the space tangent to every spacetime
event is isomorphic to flat Minkowski spaceM. As we mentioned in the intro-
duction, in this sense GR may be thought of as SR made local or been point-
wise (i.e., event-wise) gauged inM . Expressed thus the CEP effectively encodes
Einstein’s fundamental insight that locally the gravitational fieldgµν can be
“gauged away” or be reduced to the constant and flat Minkowski metricηµν =
diag(−1, +1,+1,+1) of SR26 by passing to a locally inertial frame (Torretti,
1981).

What is important to emphasize in this formulation of the CEP is that in GR
M assumes a local kinematical role in the sense that an isomorphic copy of it is
erected, as some kind of fiber space, over each and every event of the differential
manifold spacetimeM , so that every individual fiber is physically interpreted as an
independent (of the otherM-fibers) vertical world of spacetime possibilities along
which the dynamically variable field of localitygµν can be reduced to the constant
ηµν . It follows that the symmetries of gravity are the isometries ofM localized;
hence, one arrives at a gauged or localized version of the (orthochronous) Lorentz
group as the invariances of GR. This motivates us to formulate the Classical Local
Relativity Principle (CLRP) which, in a sense, is the local dynamical symmetry
corollary of the CEP above:

Classical Local Relativity Principle (CLRP): The group of local (gauge) invari-
ances of GR is isomorphic to the orthochronous Lorentz groupL+ = SO(1, 3)↑ of
symmetries of the Minkowski spaceM of SR.

To summarize, the curved spacetime of GR may be modeled after the locally
Minkowskian tangent vector bundleTM := ∪x∈X⊂M Mx—which is a sub-bundle
of the dual of theG-bundleP which has as continuous structure groupG =
SO(1, 3)↑—together with a nonflat Lie algebrag= so(1, 3)↑ ' sl(2,C)-valued
spin-LorentzianÄ1-sectionA.

Since, as it was mentioned in the introduction, causets effectively encode the
entire geometry of flat Minkowski spaceM, they can be thought of as local kine-
matical structures representing the possible local causal relations in an otherwise
curved spacetime of events. The CEP, modified to fit a finitary, causal, and curved
situation like ours, reads.

26Sinceηµν (x) delimits the Minkowski lightcone atx for everyx ∈ M , which, in turn, defines the local
causal relations between events in the Minkowski space tangent tox, the gravitational potentialgµν
may be alternatively interpreted as “the dynamical field of local causality”—local causality being
commonly known as “locality.” Thus GR may be viewed as “the classical dynamical theory of
locality.”
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Finitary Equivalence Principle (FEP): A finitary curved causal space is locally27

a causet. Presumably, and on discrete locality grounds, it is the transitivity of
causality as a partial order that must be renounced due to gravity (Finkelstein,
1988; Raptis, 1998, 2000b, in preparation-a).

In other words, a curved smooth spacetime, as a causal space, is not glob-
ally transitive; it is only locally and kinematically so.28 Thus, the CEP may be
restated as a correspondence or reduction principle: as the dynamically variable
gravitational potentialgµν reduces locally to the constantηµν in GR, causality
becomes locally29 the constant transitive partial order→.30 Equivalently, a curved
finitary causal space, one having a causal relation not fixed to a globally transitive
partial order, but with a dynamically variable local causality between its events,
is only locally reducible to a transitive, flat “inertial causet.” Thus, asM may
be thought of as vertically extending, as an independent kinematical fiber space,
over every event of the curved smooth spacetime manifold of GR, so an inde-
pendent causet space may be thought of as being raised over every point event
of a curved finitary causal space. Hence, the FEP almost mandates that a curved
finitary causal space be modeled after a finsheaf (or a bundle) of causets (over a
finitary spacetime)—with each independent causet being localized, so to speak,
over the events of the finitary base space. As a matter of fact, and also due to
the finitary principle of Locality that we will formulate shortly, we will see that a
curved finitary causal space should be modeled after a finsheaf of qausets (not of
transitive causets) for discrete locality’s sake. Thus, some kind of “quantumness”
will inevitably be infusedab initio into our model of the dynamics of finitary
causality.31 Before we give the Finitary Locality Principle and its “corollary,”
the Finitary Local Superposition Principle, we give the finitary analogue of the
CLRP.

Finitary Local Relativity Principle (FLRP): The local invariance structure of a
curved finitary causal space is a finitary version ofL+.

In a causal context, the work of Zeeman (1964, 1967) has shown that the
symmetry structureL+ of the flat Minkowski continuumM, regarded as a causal
space with a causality relation between its events modeled after a (globally) in-
ertial partial order→ which, in turn, derives fromM’s ηµν , is isomorphic to the

27Locality pending definition in our finitary context.
28That is to say, it is flat only in the “vertical” direction along each of the Minkowskian fibers of the

curved covector bundleP.
29As it was mentioned earlier, locality pending definition in our finitary scenario (see the principle of

Finitary Locality below).
30With the CEP in mind, we may call “→” “the inertial Minkowskian causality.” In a curved causal

space causality can only locally be the inertial partial order→ (CEP).
31This infusion converts our scheme to a model of the dynamics of finitaryquantumcausality. See

our formulation of the Finitary Local Superposition Principle below.
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groupG of causal automorphisms ofM.32 In our case, and in view of the FEP, we
infer that a finitary version ofL+, which we callGn, comprises the local relativity
structure group of a curved finitary causal space.33 Now, due to the local isomor-
phism mentioned in the introduction between the Lie algebras`+ = so(1, 3)↑ and
sl(2,C) in the smoothG-bundleP, we may alternatively say thatGn is the finitary
version of the local relativity groupSL(2,C) of GR in its spinorial gauge-theoretic
formulation (Ashtekar, 1986; Baez and Muniain, 1994; Bergmann, 1957). A sim-
ilar local relativity group for a curved finitary quantum causal space was proposed
in (Finkelstein, 1988),34 whereas Selesnick (1994, 1998) found thatSL(2,C) is
the result of a condensation of a quantum version of the classical binary alterna-
tive 2—the permutation local relativity group of Finkelstein’s reticular and curved
quantum causal net.

In all the principles and remarks above, we mentioned the word “local” with-
out having transcribed the notion of classical locality to a curved finitary causal
scenario like ours. We do this now. The Classical Locality Principle (CLP) in GR
may be wrapped up into the following assumption.

Classical Locality Principle (CLP): The spacetime of GR is modeled after a dif-
ferential (i.e.,C∞-smooth) manifoldM (Einstein, 1924).35

Since a locally finite causal model like ours does not involve (by definition)
a continuous infinity of differentially (i.e., smoothly) separated events like theM
above, the CLP onM may be translated in reticular causal terms to the following
requirement.

Definition of Finitary Locality (DFL): In a causet, locality pertains to physical
properties, to be interpreted as observables or dynamical physical variables, with
“effective range of action or dynamical variation” restricted to empty Alexandrov

32Since the Alexandrov causal topology ofM is defined by→ (Alexandrov, 1956a,b, 1967), it follows
thatG is the group of causal homeomorphisms ofM (Torretti, 1981).

33Then,Gn consists of the local causal homeomorphisms of the dynamically variable (and quantal)
local causal topology of a curved finitary causal space. Since we plan to model the latter after a
finsheaf of qausets whose local structure is (by definition) the qauset stalks over this curved finitary
causal base space,Gn may be equivalently thought of as consisting of the group of homomorphisms
(or automorphisms) of the quantal and causal incidence algebras respresenting these qauset stalks
(Raptis, 2000b). (See also remarks at the end of this section on the significance of our choice to
model the dynamics of a finitary quantum causality by a finsheaf of quasets.)

34We refer to the localSL2 invariances of the dyadic cell of the net there.
35Thus, the CLP may be viewed as the requirement that all the dynamical laws of physics must be

differential equations, or more intuitively, that local dynamical actions connect (influence) infinites-
imally or “differentially” separated events living in the tangent space at each event of the smooth
spacetime continuum. It follows that the CLP requires physical observables or dynamical variables
to be modeled after (sections of) smooth differential forms (inP), as mentioned in the introduction.
Thus, by “the local structure of the curved spacetime manifoldM” we mean “an eventx and the
space of directions tangent to it” (Raptis and Zapatrin, 2000). In the bundleP this pertains to its,
Minkowskian by the CEP, fibers over each and every eventx of its base spacetime manifoldM .
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sets.36 Hence, we shall demand that the following physical principle be obeyed by
our model of a curved finitary causal space.

Finitary Locality Principle (FLP): Dynamical relations on a causet (X,→) in-
volve only finitary local observables.37

Some scholia on DFL and FLP are due here. Since in our reticular scheme
we can assume no dynamical properties varying between infinitesimally (i.e.,
smoothly) separated events—as if an ether-like spacetime continuum serves as
an inert connection medium between them—we may as well define local physi-
cal observables as the entities that vary between nearest neighboring events called
“contiguous” from now on.38 The FLP can be alternatively coined “the principle of
contiguity in a finitary causal space” and it is the reticular analogue of the CLP of
GR, which, in turn, as it was posited above, may be summarized to the assumption
of a 4-dimensional differential manifold model for spacetime (Einstein, 1924).39

Also, by the FEP above, we expect that in a curved finitary causal space grav-
ity “cuts-off” the transitivity of inertial causality and restricts the latter to empty
Alexandrov causal neighborhoods of contiguous events.

At this point it must be mentioned that the FLP, apart from seeming rather
natural to assume, was somewhat “forced” on us by discrete topological and local
quantum causal considerations. In more detail, it has been recently shown (Breslav
et al., 1999) that the generating relationρ of the Rota topology of the incidence
algebraÄ associated with a poset finitary substituteP of a continuous spacetime
manifold as in (Sorkin, 1991) is the same as the one generating the finite poset
topology ofP if and only if one considers points in the Hasse diagram of the latter
that are immediately connected by the partial order “→” (i.e., “contiguous events”).

36See (Bombelliet al., 1987; Raptis, 2000b; Sorkin, 1990a,b, 1995) and the next footnote for a
definition of these.

37Thus, only dynamical changes of observables between “nearest neighboring events” defining
null Alexandrov sets inX (i.e., “p, q ∈ X : (p→ q) ∧ (6 ∃r : p→ r → q),” or in terms of the
Alexandrov interval bounded byp andq, A(p, q) :={r : p→ r → q} = ∅) are regarded as being
physically significant. This principle is an explication of the definition of nonmediated (immediate)
physical dynamical actions in the DFL above. Thus, by the DFL we anticipate the gravitational
connectionA in its finitary and causal versionAn, which is supposed to be the main gravitational
dynamical variable in our granular scheme, to be defined (as varying) on such immediate causal
arrows. See section 5 for more on this.

38In the last footnote,p andq in the causet (X,→) are contiguous.
39Parenthetically, we mention that in this paper Einstein concludes that the smooth geometrical

manifold model for spacetime, which is postulated up-front in GR for classical locality’s sake, may
be thought of as an inert and absolute ether-like background structure on which the whole theory of
GR and the mathematical language that supports it, classical Differential Geometry, is erected. In
view of his characteristic dissatisfaction with any theory that employs structures that are absolute
and nondynamical, ultimately, “unobservable substances,” and in view of the reticular, molecular
picture of Nature that the quantum revolution brought about, we infer that Einstein could not have
been content with the smooth manifold model for spacetime. Indeed, we find that this was the case
(Einstein, 1936, 1956)—see quotations concluding the paper.
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Then, if one interprets “→” in the finitary poset causally instead of topologically as
in (Raptis, 2000b; Sorkin, 1995), and gives a cogent quantum interpretation to the
structure of the causal Rota algebra associated with it as in (Raptis, 2000b; Raptis
and Zapatrin, 2000), one is led to infer that the physically significant, because local,
causal connections between events in a qauset are the contiguous, immediate ones;
hence the FLP above. This was first anticipated by Finkelstein (1988). The FLP
promotes this conjecture to a physical “axiom” or principle concerning the finitary
dynamics of local (quantum) causality in a curved locally finite (quantum) causal
space in the same way that in the differential manifold spacetimeM of GR locality
was “forced” on Einstein byM ’s own smoothness.

According to the finitary principles formulated above, we may say that in the
same way that the CEP foreshadows a nontrivial connectionAn (and its associated
curvatureFn) in the smooth continuum—the main local dynamical variable of
GR as a gauge theory inP, so FLP, by “cutting-off” the transitivity property
of “→,” furnishes us with the crucial idea of how to model the dynamics of a
contiguous (local) quantum causality in a curved finitary causal space, namely,
one must define a nontrivial finitary connection (and its associated curvature) on a
finsheaf of qausets over it. This connection, in turn, like its smooth spin-Lorentzian
counterpartA onP overM respects local relativistic causality,40 should somehow
respect the local quantum causal connections in the qauset fibers.41 This highlights
and anticipates two very important aspects of the present paper:

(a) The finitary connectionAn (and its associated curvature) derives from the
local algebraic structure of the finsheaf of qausets.42 Thus, our scheme
allows for a purely algebraic and local definition of connection (and
its associated curvature) without reference to a background geometric
base space43 which will only serve as a surrogate host ofAn and which
will have to be discarded, or at least be regarded as being physically
insignificant, at the quantal level, only to be recovered as a fixed inert
(nondynamical) geometrical structure at the classical limit of an inverse
system of curved finsheaves of qausets.

40Since it preserves the Minkowski lightcone soldered (with origin) at each point-eventx of M—the
Minkowski lightcone in each fiber spaceMx of P.

41That is to say, it should respect the generating or “germ” relationEρ of the Rota quantum causal
topology of the qauset stalk of the finsheaf in focus. We defineEρ in the next section and germs of
(continuous sections of) finsheaves of qausets in section 4.

42That is to say, from the algebraic structure of the quantal and causal incidence algebra stalks of the
finsheaf in focus.

43This is in glaring contrast to the situation in the curved geometrical point set manifoldM of GR
where connection is intimately associated with a parallel transporter (of smooth tensor fields) along
smooth finite spacetime curves, whereas its associated curvatureF measures the anholonomy
of such parallel transports around smooth finite spacetime loops (G¨ockeler and Sch¨ucker, 1990).
Certainly, both are nonlocal geometric conceptions ofA and itsF .
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(b) A sheaf (and a nontrivial connection on it) is the “right” (i.e., the appropri-
ate and natural) mathematical structure for modeling the dynamics (i.e.,
the curving) of local quantum causality, since, by definition, a sheaf is
a local homeomorphism (Bredon, 1967; Mallios, 1998a; Raptis, 2000a),
so that aGn-finsheaf of qausets by definition respects the reticular local
quantum causal topology of the qauset stalks, while a non-flatgn-valued
connectionAn on it effectively encodes the “local twisting” (curving)
of these stalks relative to each other, thus it represents the dynamics of
a locally finite quantum causality. We will return to these issues more
analytically in the next three sections.

We close this section by giving the analogue of the kinematical Coherent
Local Superposition Principle in (Finkelstein, 1988, 1991) for our finsheaves of
qausets.

Finitary Local Superposition Principle (FLSP): Stalk-wise in a finsheaf of qausets
the latter superpose coherently. It follows from the FLRP that thegn-valued con-
nectionAn preserves this “stalk-wise quantum coherence or local superposition
of qausets.”44

In the next section we present an algebraic approach to flat (i.e., nondynamical
or ungauged) reticular local quantum causality, whereas in sections 4 and 5 we
motivate the finsheaf-theoretic point of view and we study a gauged, thus curved,
principal finsheaf of qausets, respectively.

3. FINITARY SUBSTITUTES AND THEIR
FLAT QUANTUM CAUSAL RELATIVES

In this section we motivate the modeling of qausets after incidence algebras
à la Raptis (2000b), so as to prepare the reader for our representing the stalks of
a finsheaf of qausets over some curved finitary causal space as such Rota algebras
in section 5. The relevance of qauset theory to the problem of discrete Lorentzian
quantum gravity is also discussed. In particular, we approach the issue of “discrete
locality” or “finitary local causality” via qausets. We quote the main result from

44This is so sinceAn takes values in the reticular (and quantal) algebragn of Rota algebra ho-
momorphisms which, in turn, by the functorial equivalence between the category of finitary
posets/poset morphisms (or its corresponding category of locally finite causets/causal morphisms)
and the category of incidence Rota algebras/Rota homomorphisms (or its corresponding category
of qausets/qauset homomorphisms) (Raptis and Zapatrin, 2000, in press; Stanley, 1986; Zapatrin,
in press), it may be regarded as the reticular and quantal version of Zeeman’s (1964) Lie algebra
`+ of orthochronous Lorentz transformations (i.e., the infinitesimal causal automorphisms) of the
Minkowski continuumM regarded as a flat inertial poset causal space. We will return to this remark
in sections 4–6, but the upshot is that as a linear operator-valued map,An will preserve the local
linear structure stalk-wise, hence, the local quantum coherence or quantum interference of qausets
dwelling in these stalks.
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(Raptis, 2000b) that qausets are sound models of a local and quantal version of the
causets of (Bombelliet al., 1987; Sorkin, 1990a,b, 1995) and use it as a theoretical
basis to implement the FLP of the previous section, as well as to introduce the cen-
tral physical idea for curving local quantum causality in section 5 by localizing or
gauging a finsheaf of qausets (section 4), thus also realize the FEP of the previous
section.

The topological discretization of continuous spacetime (Sorkin, 1991) has as
its main aim the substitution of a continuum of events by some finitary, but topo-
logically equivalent, structure. The latter is seen to be aT0 poset. Such a finitary
substitute for the continuous spacetime may be viewed as an approximation of its
continuous counterpart, but one of physical significance, since it seems both theo-
retically and experimentally lame to assume a continuum as a sound model of what
we actually experience (i.e., record in the laboratory) as “spacetime” (Raptis and
Zapatrin, 2000). The theoretical weakness of such an assumption is the continuous
infinity of events that one is in principle able to pack into a finite spacetime vol-
ume resulting in the unphysical infinities that plague classical and quantum field
theory. The experimental weakness of the continuous model of spacetime is that
it undermines the operational significance of our actual spacetime experiments,
namely, the fact that we record a finite number of events during experimental op-
erations of finite duration in laboratories of finite size; altogether, in experiments
of finite spatiotemporal extent (Raptis and Zapatrin, 2000). Also, from a realistic
or pragmatic point of view, our localizations (i.e., determinations of the loci) of
events are coarse or “approximate” and inflict uncontrollable perturbations to the
structure of spacetime,45 thus our rough, because dynamically perturbing, mea-
surements of events may as well be represented by open sets or “regions” about
them (Breslavet al., 1999; Butterfield and Isham, 2000; Raptis, 2000a; Raptis and
Zapatrin, 2000, in press; Sorkin, 1991, 1995).

Of course, the discrete character of such finitary approximations of a contin-
uous spacetime ties well with the reticular and finite characteristics that a cogent
quantal description of spacetime structure ought to have. Thus, if anything, topo-
logical discretizations should prove useful in modeling the structure and dynamics
of spacetime at quantum scales (Raptis and Zapatrin, 2000, in press). It must be
stressed however that such a contribution to our quest for a sound quantum theory
of gravity is not mandatory from the point of view of GR—the classical theory of
gravity, since in the latter the topology of spacetime is fixed to that of a locally
Euclidean manifold, while only the Lorentzian metric on it is assumed to be a
dynamically variable entity. Effectively,gµν is the sole “observable” in GR. How-
ever, it seems ratherad hocand unreasonably short sighted in view of the persisting
and pestilential problem of the quantum localization of spacetime events to assume

45Even more so in our scenario where spacetime itself is assumed to be fundamentally a quantum
system (Raptis and Zapatrin, 2000, in press).
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that only the metric, but not the topological structure of the world, is subject to
(quantum) dynamical fluctuations and variations. Such a theory of “spacetime
foam,” that is to say, of a dynamically fluctuating and in principle observable
quantum spacetime topology, has been aired for quite some time now (Wheeler,
1964), and it is akin in spirit to the topological discretizations developed in (Sorkin,
1991), as well as to their quantal relatives in (Raptis and Zapatrin, 2000).46 An
attempt at an entirely algebraic description of quantum spacetime foam, akin to
the finsheaf localizations of qausets to be worked out here, was recently proposed
in (Raptis and Zapatrin, in press).

On the other hand, in view of the unphysical, nondynamical, nonrelativistic,
space-like nature of the constant, 2-way, spatial connections between events that
define the fixed locally Euclidean topology of the classical spacetime continuum
M , there is an important affinity between our quest for a dynamical theory of local
quantum causal topology and the problem of constructing a reasonable quantum
theory of gravity. To understand this close relationship, we must change focus of
enquiry from a theory of spatial Euclidean connections between geometric points
to a more physical, because relativistic, temporal or causal spacetime topology
between events as the quotation opening this paper suggests and as strongly advo-
cated in (Finkelstein, 1988).

As it was mentioned in the previous section, in GR the gravitational potential,
which is identified with the metricgµν of spacetime, may also be thought of as en-
coding complete information about the local causal relations between events. Thus,
GR may also be interpreted as the classical dynamics theory of locality. It follows
that a quantum theoresis of the dynamics of causal connections between spacetime
events may lead to, if not just give us invaluable clues about, a classically conceived
quantum theory of gravity—the quantization of the gravitational fieldgµν(x) of
GR. In short, there probably is a way from a dynamical theory of local quantum
causality to the graviton, but not the other way around (Bombelliet al., 1987). A
full fledged noncommutative topology for curved (i.e., dynamical) local quantum
causality is rigorously formulated in the scheme-theoretic language of modern al-
gebraic geometry and its categorical outgrowth, topos theory, in (Raptis, in press).

However, it must be stressed that it is quite clear, at least from agedanken
experimental point of view, why GR and QT are incompatible: the more accurately
one may try to determine (i.e., localize) the spacetime metric, the more energy one
must employ, the stronger the dynamical perturbations inflicted on it, the higher
the uncertainty of its local determination.47 Another way to say this is that we
cannot distinguish or measure the proper pseudometric distance between spacetime

46See (Sorkin, 1995) for some discussion on this affinity.
47That is to say, the CEP on which GR is essentially based comes straight into conflict with the

Uncertainty Principle on which QT is founded (Candelas and Sciama, 1983; Donoghueet al., 1984,
1985; Sorkin, 1995).
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events (via the gravitational potentialgµν) at a resolution higher than the Planck
length (l P ≈ 10−35m) without creating a black hole which, in return, “blurs” this
separation of theirs.48 This limitation alone is sufficient to motivate some kind
of “topological foam” conception of spacetime at quantum scales (Raptis and
Zapatrin, in press; Wheeler, 1964). An analogous incompatibility (of physical
principles) that may hinder the development of a quantum theory of the dynamics
of a finitary causality has not been foreseen yet. We hope that such a fundamental
conflict of physical principles will be absentab initio from an innately locally
finite dynamical theory of quantum causality, or at least from the kinematics of
such a theory like the one that we will propose in section 5.

This lengthy prolegomenon to the introduction of the flat qausets in (Raptis,
2000b) highlights two important aspects of our present endeavor: first, our locally
finite, and to be gauged subsequently, qausets may evadeab initio the infinities of
QGR on a smooth manifold, and second, as quantum causal–topological structures,
they grope with the problem of the structure and dynamics of spacetime at quantum
scales at a level deeper than QGR proper which is supposed to study solely the
quantum aspects of the dynamics of the metrical structure of the world, because
we have seen already at the classical level that causality, as a partial order, and
its morphisms, determine the conformal geometric structure of flat Minkowski
space and its symmetries (Alexandrov, 1956a,b, 1967; Bombelli and Meyer, 1989;
Robb, 1914; Sorkin, 1990a,b; Zeeman, 1964, 1967). After all, as Bombelliet al.
successfully observed in (1987), it is such a model for events and their causal
relations that uniquely determines spacetime as a 4-dimensional, continuous (C0),
differential (C∞-smooth), and Lorentzian (i.e., of signature±2) metric manifold.

We commence our brief review of qausets by first recalling very briefly
some important facts about finitary substitutes for continuous spacetime topology
(Raptis, 2000a,b; Raptis and Zapatrin, 2000, in press; Sorkin, 1991). LetX be a
bounded region in a continuous spacetime manifoldM49 andU = {U } a locally
finite open cover of it.50 Any two pointsx andy of X are said to be indistinguishable
with respect to its locally finite open coverU if ∀U ∈ U : x ∈ U ⇔ y ∈ U. Indis-
tinguishability with respect to the subtopologyT (U)51 of X is an equivalence rela-
tion on the latter’s points and is symbolized by

U∼. Taking the quotientX/
U∼ =: F

48This is the arch paradox of event localization that makes the conception of a quantum theory of
gravity hard even in principle: the more accurately we try to localize spacetime events, the more we
blur them, so that our sharpest determinations of them can be modeled after coarse, rough, fuzzy,
“dynamically fluctuating” open neighborhoods about them as in (Breslavet al., 1999; Raptis, 2000a,
2001; Raptis and Zapatrin, 2000, in press; Sorkin, 1991, 1995; Zapatrin, 1998).

49By “bounded” we mean “relatively compact” (i.e., a region whose closure is compact). By “contin-
uous” we mean theC0 aspects of classical spacetime (i.e., its features as a topological manifold).

50That is to say, every point eventx in X has an open neighborhoodO(x) that meets only a finite
number of open setsU in U .

51T (U ) consists of arbitrary unions of finite intersections of the open sets in the coverU .
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results in the substitution ofX by a spaceF consisting of equivalence classes
of its points, whereby two points in the same equivalence class are covered by
(i.e., belong to) the same, finite in number, open neighborhoodsU of U , thus are
indistinguishable by (our coarse observations in) it.

Let x and y be points belonging to two distinct equivalence classes inF.
Consider the smallest open sets in the subtopologyT (U) of X containingx andy
respectively given by:3(x) := ∩{U ∈ U : x ∈ U } and3(y) := ∩{U ∈ U : y ∈
U }.Define the relation→ betweenx andy as follows:x→ y⇔ 3(x) ⊂ 3(y)⇔
x ∈ 3(y).Then assume thatx

U∼ y in the previous paragraph stands forx→ y and
y→ x;52 write x↔ y.→ is a partial order onF and the continuousX has been
effectively substituted by the finitaryF which is aT0 topological space having the
structure of a poset (Sorkin, 1991). Sorkin uses the finitary topological and partial
order-theoretic languages interchangeably exactly due to this equivalence between
T0 finitary substitutes and posets. For future purposes we may distill this to the
following statement: in (Sorkin, 1991) a partial order is interpreted topologically.
We shall call it “topological partial order” and the poset encoding it “topological
poset” (Raptis, 2000b).

One can show that topological posets have an equivalent representation as
simplicial complexes if instead of using Sorkin’s “equivalence algorithm” above,
one uses Alexandrov’s “nerve construction” (Alexandrov, 1956a,b, 1961; Raptis
and Zapatrin, 2000; Zapatrin, in press). In the nondegenerate cases, the posets
associated with Alexandrov nerves and those produced by Sorkin’s algorithm
yielding Fs from X relative toUs, are the same, so that both are “topological
posets” according to our denomination of theFs (Raptis, 2000b). In fact, the
correspondence between the poset category consisting of topological posets/poset
morphisms obtained from Sorkin’s algorithm and the poset category of simplicial
complexes/simplicial maps obtained from Alexandrov’s construction, is functorial
(Raptis and Zapatrin, 2000; Zapatrin, in press).

In (Raptis and Zapatrin, 2000) an algebraic representation of topological
posets was presented using the so-called Rota incidence algebras associated with
posets (Rota, 1968). The Rota incidence algebraÄ of a posetP was defined there
by using Dirac’s quantum ket-bra notation as follows:

Ä(P) = span{|p〉〈q| : p→ q ∈ P},
with product between two of its ket-bras given by:

|p〉〈q| · |r 〉〈s| = |p〉〈q | r 〉〈s| = 〈q | r 〉 · |p〉〈s| =
{ |p〉〈s| if q = r

0 otherwise

Evidently, for the definition of the product inÄ, the transitivity of the partial
order→ in P is used.Ä(P), defined thus, is straightforwardly verified to be an

52That is to say,x andy have the same smallest open neighborhood about them inT (U ).
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associative algebra.53 WhenP is a finitary topological poset in the sense of Sorkin
(1991), its associated incidence algebra is called “topological incidence algebra”
(Raptis, 2000b).

We may define purely algebraically a topology on any incidence algebraÄ

associated with a posetP by considering its primitive spectrumS consisting of
(equivalence classes of) its irreducible representations (Zapatrin, 1998), whose
kernels are primitive ideals in it, in the following way according to Breslavet al.
(1999). With every pointp in P the following ideal inÄ is defined as:

I p = span{|q〉〈r | : |q〉〈r | 6= |p〉〈p|},
so that the Rota topology ofÄ(P) is generated by the following relationρ between
“points” I p and Iq in its primitive spectrumS:

I pρ Iq ⇔ I p Iq(6= Iq I p)
6=⊂ I p ∩ Iq.

It has been shown that the Sorkin topology of a topological posetP is the same as the
Rota topology of its associated topological incidence algebraÄ(P) exactly when
the generating relationρ for the latter is identified with the transitive reduction

∗→
of the partial order arrows→ in P (Breslavet al., 1999; Raptis, 2000b).54 This
means essentially that the “germ relations” for the Rota topology on the algebra
Ä associated with the finitary topologyP are precisely the immediate arrows

∗→
in the latter topological poset which, in poset parlance, are called “the covering
relations of the poset”. This is an important observation to be used shortly in order
to define in a similar way the germs of quantum causal relations in a qauset with
respect to which finsheaves of the latter will be defined in the next section as
structures that preserve precisely these local quantum causal topological “germ
relations.”

To this end we give the definition of qausets. First, a causet is defined in
(Bombelli et al., 1987) as “a locally finite set of points endowed with a partial
order corresponding to the macroscopic relation that defines past and future.”
Local finiteness may be defined as follows: use→ of a posetP, interpreted now
as a causal relation on the set of vertices ofP, to redefine3(x) for somex ∈ P

53The associativity of the product of the incidence algebraÄ is due to the transitivity of the partial
order→ of its associated posetP. As we saw in section 2, it is precisely the latter property of
causality, when modelled after the globally inertial→, that is regarded as being responsible for
the flatness of Minkowski space determined by→. It follows that a localization or gauging of
causets and their corresponding qausets in order to curve them, by providing a connection on a
principal finsheaf of theirs, will “cut-off” the transitivity of the causets and the associativity of their
corresponding qausets, and will restrict it locally (i.e., stalk-wise) in the finsheaf thus implement
the FEP of section 2.

54That is to say,I p is ρ-related toIq if and only if (p
∗→ q)⇔ [( p→ q) ∧ (/∃r : p→ r → q);

p, q, r ∈ P] (i.e., only for immediately connected or contiguous vertices inP).
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as3(x) = {y ∈ P : y→ x}, and duallyV(x) = {y ∈ P : x→ y}. 3(x) is the
“causal past” of the eventx, whereasV(x) its “causal future.” Then, local finiteness
requires the so-called Alexandrov set or “causal interval”A(x, y) := V(x) ∩3(y)
to be finite for all x, y ∈ P such thatx ∈ 3(y). In other words, only a finite
number of events “causally mediate” between any two eventsx andy, with x→ y,
of the causetP. In a sense, the finitarity of the topological posets translates by
Sorkin’s semantic switch to the local finiteness of causal sets, although it must be
stressed that the physical theories that they support, the discretization of topological
manifolds in (Sorkin, 1991) and causet theoryper sein (Bombelli et al., 1987;
Sorkin, 1995) respectively, are quite different in motivation, scope and aim (Raptis,
2000b; Sorkin, 1990a,b, 1991, 1995).

At the same time, it was Sorkin who first insisted on a change of physical
interpretation for the partial order→ of finitary posetsP “ from a relation encod-
ing topological information about bounded regions of continuous spacetimes, to
one that stands for the relation of causal succession between spacetime events”
(Sorkin, 1995). In (Raptis, 2000b), this fundamental semantic switch was evoked to
reinterpret the incidence algebras associated with the finitary posets in (Raptis and
Zapatrin, 2000) from topological to causal. Thus, causal incidence algebras were
defined as theÄs associated with finitary posetsP when the latter are interpreted
as causets̀a laBombelliet al. (1987). Of course, in our pursuit of a cogent quantum
theory of the dynamics of causality and,in extenso, of gravity, such a change of
physical meaning of finitary partial orders from spatial/choro-logical/topo-logical
to temporal/chrono-logical/causal is very welcome for the reasons briefly given
earlier in this section.

Finally, in (Raptis, 2000b) the quantum physical interpretation given to topo-
logical incidence algebras in (Raptis and Zapatrin, 2000) was also given directly
to causal incidence algebras. In effect, the quantal interpretation of the causal
incidence algebras rests essentially on the fact that in the new Rota algebraic en-
vironment the causal arrows of the causets from which these qausets derive can
coherently superpose with each other—an operation that is prominently absent
from the respective “classical” causets of Bombelliet al. (Raptis, 2000b; Raptis
and Zapatrin, 2000, in press). Totally, qausets were defined as the causally and
quantally interpreted Rota incidence algebras associated with poset finitary sub-
stitutes of continuous spacetimes. It follows that the generator

∗→ of topological
relations in the topological posets of Sorkin becomes the germEρ of quantum causal
relations in qausets.55 Its interpretation is as “immediate quantum causality”56 and
it is exactly due to its natural Rota algebraic representation that qausets are sound

55Due to its causal instead of topological meaning, we are going to writeEρ instead ofρ from now on
for this local quantum causal topological variable.

56As we said, the epithet “quantum” refers precisely to the possibility for coherent quantum superpo-
sitions of the causal arrows ofEP in its associated incidence algebraEÄ( EP).



P1: FOM

International Journal of Theoretical Physics [ijtp] PP233-343694 September 11, 2001 9:10 Style file version Nov. 19th, 1999

1906 Mallios and Raptis

models of quantum causal spaces (Finkelstein, 1988; Raptis, 2000b).Eρ is the
algebraic correspondent in the causal incidence algebraEÄ of the immediate causal
or contiguous or covering relation

∗→ of its associated causetEP (Breslavet al.,
1999; Raptis, 2000b; Raptis and Zapatrin, 2000).

The immediate quantum causality represented byEρ in the incidence algebra
associated with a causet is ideal for implementing the FLP of the previous sec-
tion. In particular, it explicitly shows that the physically significant, because local,
quantum causality is the relation

∗→ between immediately separated events in a
finitary spacetimeX (Finkelstein, 1988; Raptis, 2000b). Its nonlocal (Finkelstein,
1988) transitive closure, the partial order→ in the associated causetEP, gener-
ates EP’s (globally) inertial Minkowskian causal topology which, being a fini-
tary poset, essentially determines a locally finite version of flat Minkowski space
and its global orthochronous Lorentz symmetries (Alexandrov, 1956a,b, 1967;
Robb, 1914; Zeeman, 1964, 1967). This is spacetime, as a classical causal space,
ungauged.

It follows that in order to curve qausets, a gauged or localized version ofEρ
must be employed, that is to say, we should consider a dynamical local quantum
causal connection relation that only locally (i.e., event-wise) reduces to a transi-
tive partial order—the inertial Minkowskian causality of a reticular and quantal
Minkowski space (as a qauset) according to the FEP. In turn, this means that
only the transitive reduction

∗→ of the flat global inertial causality→ will be the
physically significant local dynamical variable in a curved finitary quantum causal
space. We will model this conjecture by a nonflat connectionAn on a finsheaf of
qausets in section 5.

We conclude the present section by discussing briefly two relatively important
aspects of qausets, one physical, the other mathematical.

The physical aspect of qausets pertains to their operational significance. Al-
though the operational soundness of quantum discretized spacetimes has been
fairly established (Raptis and Zapatrin, 2000) in that we have a sound and prag-
matic operational interpretation of quantal topological incidence algebras, we still
lack such an account for qausets. Now, GR’s operational significance can be
summarized in the following:gµν(x), which mathematically represents the lo-
cal gravitational potential, is supposed to encode all the information about our
local experimental tampering with spacetime events via synchronized clocks and
equicalibrated rulers so that, in principle, from the data of such a local experi-
mental activity, one can construct the metric tensor at a neighborhood of an event.
In such an operational account, there is little room left for a “passive” realistic
interpretation of the gravitational field as an independent entity or “real substance
out there” whose interaction with our instruments yields readings of events. The
operational approach is in an important sense more active in that it entails that
spacetime attributes are extracted from “it” by our very experimental actions on
(i.e., our planned, controlled and in principle reproducible observations of) “it.”
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Also, this seems to be more in accord with the observer-dependent conception of
physical reality that QT supports (Finkelstein, 1996).

For the causets of Bombelliet al. (1987) and Sorkin (1990a,b), Sorkin (1995)
contended that an operational interpretation is rather unnatural and lame. On the
other hand, in view of the algebraic structure of qausets and the sound quantum-
operational interpretatioǹa la Raptis and Zapatrin (2000) that their topological
counterparts were given, and because as we mentioned in section 2 the local field
of gravity gµν(x) can also be interpreted as the dynamical field of the local causal
topology of spacetime, we still hope for a sound operational interpretation of them.
At the end of the next section we present our first attempt at a sound operational
interpretation of the locally finite quantum causality encoded in qausets based on
the analogous operational meaning of the finitary poset substitutes of continuous
spacetimes and their incidence algebras (Raptis and Zapatrin, 2000; Sorkin, 1991,
1995). A more thorough presentation of the operational character of qausets will
be given in (Raptis, in preparation-b).

The mathematical aspect of qausets that we would like to discuss next is
their differential structure. Recently, there has been vigorous research activity on
studying differential calculi on finite sets and the dynamics of networks (Dimakis
et al., 1995), as well as on defining some kind of discrete Riemannian geometry on
them (Dimakis and M¨uller-Hoissen, 1999). The main result of such investigations
is that with every directed graph a discrete differential calculus may be associated.
It follows that for the locally finite posets underlying qausetsEÄ (i.e., the causets
EP associated with them), which are also (finitary) digraphs, there is a discrete
differential calculus associated with them (Raptis and Zapatrin, 2000, in press;
Zapatrin, in press). In this sense, but from a discrete perspective, a partial order
determines not only the topological (C0), but also the differential (C∞) structure
of the spacetime manifold with respect to which the Lorentziangµν , which is
also determined by causality as a partial order,57 is then defined as a smooth field
(Bombelliet al., 1987).

However, as we noted in the introduction, the K¨ahler-Cartan type of dis-
crete differential operatord defined in such calculi on finite sets is a flat sort of
connection (Mallios, 1998a). This is not surprising, since the underlying finite
spacetimeX is taken to be a structureless point set—in a sense, a kind of discon-
nected, noninteracting dust. All the digraphs supporting such calculi are assumed
to be transitive, so that if some causal interpretation was given to their arrows, by
our heuristic principles of section 2 concerning the relation between an inertial
transitive causality and flatness, their corresponding differential calculi should be
flat as well.58 This is the “curvature problem” alluded to in the introduction. To

57At least locally in a curved spacetime (see section 2).
58That is to say, the differential operators defining such calculi are flat connections in the sense of

Mallios (1998a).
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evade it, in section 5 we straightforwardly gauge (a finsheaf of) qausets so that a
nonflat connectionAn is naturally defined on them. The physical interpretation of
such a gauging of thed of flat qausets to theD = d +A of the curved finsheaf
of qausets, will be the first essential step towards a finitary, causal and quantal
version of Lorentzian gravity.

In the next section we recall the finsheaves from (Raptis, 2000a). Our principal
aim is to bring forth the sense in which a finsheaf of continuous maps over Sorkin’s
topological posets substitutes the sheaf ofC0-topological observables over a con-
tinuous spacetime manifold, then try to “read” a similar physical meaning for a
finsheaf of qausets, namely, that they model finitary and quantal replacements of
the causal relations between events in a bounded region of flat Minkowski space
M, as well as the causal nexus ofC∞-smooth fields in such a region of the
smooth differential manifoldM. At the same time, the finsheaves of their con-
tinuous symmetries may be thought of as reticular analogues of the continuous
orthochronous Lorentz topological Lie group manifoldSO(1, 3)↑. Thus, in such
a scenario, not only the operational significance of our own pragmatic finitary
“perceptions” of spacetime structure and its dynamics will be highlighted, but also
the operational meaning of our rough and dynamically perturbing determinations
of its symmetries—them too to be subsequently gauged.

4. FINITARY SPACETIME SHEAVES AND THEIR
FLAT QUANTUM CAUSAL DESCENDANTS

In (Raptis, 2000a), a finsheafSn of continuous functions on a bounded region
X of a topological spacetime manifoldM was defined as the sheaf of sections of
continuous maps onX relative to its covering by a locally finite collection of open
subsets ofM.Since, as we saw in the previous section, for every such finitary open
coverUn of X a finitary topological posetFn was defined and seen to effectively
substituteX, the aforementioned sheaf can be thought of as havingFn as base space.
Thus, we writeSn(Fn) for such a finsheaf (Raptis, 2000a). Indeed,Sn was seen to
have locally the same finite poset topology as its base spaceFn,59 hence its quali-
fication as a sheaf (Bredon, 1967; Mac Lane and Moerdijk, 1992; Mallios, 1998a).

Now, as we briefly alluded to in the introduction, the essential result from
(Raptis, 2000a), and the one that qualifies finsheaves as sound reticular approxi-
mations of the continuous spacetime observables onX, is that an inverse system of
finsheaves has an inverse limit topological space that is homeomorphic toS(X)—
the sheaf of continuous functions onX, in the same way that in (Sorkin, 1991) an
inverse system of finitary poset substitutes ofX was seen to “converge” to a space
that is homeomorphic to the continuous topological manifoldX itself.

59Technically speaking,Sn was locally homeomorphic to the finitary topological posetFn of (Sorkin,
1991).
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To define finsheaves of qausets, we adopt from (Raptis and Zapatrin, 2000)
the association with every poset finitary substituteFn of a bounded spacetime
region X, of a Rota incidence algebraÄ(Fn), as it was shown in the previous
section. AsFn is a topological poset, its associatedÄn is a topological incidence
algebra (Raptis, 2000b). As we noted in the previous section, to get the qauset
EÄn from Än, we “causalize” and “quantize” it̀a la Raptis (2000b). As a result
of such a causalization, we writeEρ for the generating relation ofEÄn’s (quantum)
causal topology in the same way thatρ in the previous section was seen to be
the generator ofÄ’s “spatial” Rota topology. The significance ofEρ is (quantum)
causal, while ofρ only topological.

Finsheaves of qausets are then defined to be objectsESn := EÄn( EFn), whereby
the local homeomorphism between the base causal setEFn and the algebraEÄn is now
given, in complete analogy to the finsheafSn(Fn) of topological posets in (Raptis,
2000a), asp

∗→ q⇔ I pEρ Iq, (p, q ∈ EFn, I p, Iq ∈ ES( EÄn)). As it was mentioned in
the previous section, the Sorkin poset topology on the topologicalFn, obtained as
the transitive closure of the immediate contiguity relation

∗→ between its vertices,
is the same as the Rota topology of its associated topological incidence algebra
Än generated byρ, only now these relations have a directly causal/temporal rather
than a topological or “purely spatial” significance (Raptis, 2000b; Sorkin, 1995).

Also, in the same way thatSn(Fn) was seen to be the finsheaf of continuous
maps on theFn obtained fromX with respect to its locally finite open cover
Un and generated by its (germs of) continuous sections (Raptis, 2000a), we may
similarly considerGn := Ln( EÄn) to be the finsheaf of local (quantum) causal (auto)
morphisms ofEÄn. We may callGn “the finitary spacetime transformation sheaf
adjoint to ESn.” 60 The (germs of) continuous sections of this sheaf are precisely
the maps that preserve the local (quantum) causal topologyEρ of EÄn, so that by the
definition of the latter they are theEÄn-homomorphisms “restricted” to the primitive
idealsI p andIq in them—the Gel’fand “point events” of the qausetEÄn

61 which is
the finitary base space of the finsheafGn.

The finsheafGn consists of the local causal homeomorphismsEλn of the
local (quantum) causal topology (generated by)Eρ of the qausetEÄn which, by the

60Gn is a group sheaf with carrier or representation or more commonly known as “associated” sheaf
that of qausetsESn. The proper technical name forGn is “principal sheaf with structure groupLn”
although, as we also mentioned in the introduction, we use the latter name for the pair (ESn, Gn).

61This topological interpretation of the primitive ideals of an incidence algebraÄ associated with a
finitary poset substituteF in (Sorkin, 1991) as “space points,” comes from the Gel’fand “spatial-
ization procedure” used in (Breslavet al., 1999; Zapatrin, 1998), whereby, the point vertices of the
poset substituteF of X were corresponded to elements of the primitive spectrumS of its associated
incidence algebraÄwhich, in turn, are the kernels of (equivalence classes of) the irreducible repre-
sentations ofÄ(F). In our causal versionEÄ ofÄ, the primitive spectrum of the former is denoted by
ES and its points (i.e., the primitive ideals ofEÄn) are interpreted as “coarse spacetime events”—they

are equivalence classes ofX’s point events relative to our pragmatic observationsUn of them of
limited power or energy of resolution (Cole, 1972; Raptis, 2000a; Raptis and Zapatrin, 2000).
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discussion in section 2, constitutes the finitary version of the orthochronous Lorentz
groupL+. HenceGn may be thought of as the finitary substitute of the continuous
Lie group manifoldL+ which, due to the (local) quantal character of the qausets in
EÄn, also inherits some of the latter’s “quantumness” in the sense that since qausets
coherently superpose with each other locally according to the FLSP of section 2,
so will their symmetry transformations. This is in accord with Finkelstein’s insight
that if spacetime is to be regarded as being fundamentally a quantum system, then
so must be its structure symmetries (Finkelstein, 1996). Thus, the finsheafESn,
together with its adjointGn of its local symmetries, constitute a principalGn-
finsheaf of qausets and their finitary local causal (and quantal) homeomorphisms.

We may denote this principal finsheaf either byEMn := Gn( ESn), or more
analytically by EMn := ( EFn, EÄn, Ln),62 with the corresponding local homeomor-
phisms defining them as finsheaves (with a quantum causal topological interpre-
tation) being denoted asEsn : ( EFn,

∗→)→ ( EÄn, Eρ) andEλn : ( EÄn, Eρ)→ ( ESn, gn)—
where the reticular local causal homeomorphismEλn corresponds aEρ-preserving
map to an element in the reticular Lie algebragn of the structure groupGn = L+n
of theGn-finsheaf EMn.

63

The main conjecture in this paper, briefly mentioned at the end of (Raptis,
2000a) and in the introduction, and not to be analytically proved here, is that an
inverse systemK of theGn-finsheaves of qausetsEMn “converges” to the classical
flat MinkowskianG-sheaf (X ⊂M,Ä, d, L+), whereX is a bounded region in the
smooth, flat Minkowski manifoldM, which serves as the base space for the sheaf
of smooth differential formsÄ on it. This sheaf has as stalks overX’s point events
isomorphic copies of theZ-graded module of Cartan exterior differential forms
Ä := Ä0⊕Ä1⊕Ä2, . . . , d is the nilpotent and flat K¨ahler-Cartan connection on
the sheaf effecting (sub)sheaf morphismsd : Äi → Äi+1 in the differential triad
(X,Ä, d) (Mallios, 1998a), whereasL+ is the continuous structure group of the
sheaf consisting of the global orthochronous Lorentz transformations ofM.64

Heuristic arguments supporting this conjecture are:

(a) The topological (i.e.,C0) structure of (X of)M as a topological manifold
arises as the limit space of an inverse system of finitary incidence algebras

62The symbol “ EMn” for “ Gn( ESn)” will be explained shortly.
63gn is the finitary version of the Lie algebrà+ of the orthochronous Lorentz groupGn = L+ :=

SO(1, 3)↑ whose algebraic structure is supposed to respect the “horizontal” reticular causal topology
of EÄn which is generated byEρ—“the germ of the local quantum causal topology” of the qauset
stalks EÄn of Gn’s associated finsheafESn (Raptis, 2000a).

64This description of the sheaf (M,Ä, d, L+) makes it theG-sheaf-theoretic analogue of aG-
bundle of exterior forms having as base space the flat Minkowski differential manifoldM, as fibers
modules of smooth Cartan forms onM, as flat generalized differential (i.e., connection) structure
the nilpotent Kähler-Cartan differentiald, and as structure group the orthochronous Lorentz group
L+. One may regard this sheaf as the mathematical structure in which classical as well as quantum
field theories are formulated in the absence of gravity.
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Än(Fn), now topologically interpreted, as shown in (Raptis and Zapatrin,
2000; Sorkin, 1991). It can also be determined from the causally inter-
preted incidence algebrasEÄn( EFn) as suggested in (Bombelliet al., 1987).

(b) The differential (i.e.,C∞-smooth) structure of (X in)M as a differen-
tial manifold supporting fibers of modulesÄ of Cartan’s exterior forms,
arises as the limit space of an inverse system of finitary incidence alge-
brasÄn(Fn), since the latter have been seen to be discrete differential
manifolds in the sense of (Dimakis and M¨uller-Hoissen, 1999; Raptis
and Zapatrin, 2000, in press; Zapatrin, in press). In fact, as Dimakiset al.
(1995) show, the discrete differential structure of such discrete differen-
tial manifolds also determines their (finitary) topology.65 The differential
structure ofM can also be determined from the causally interpreted in-
cidence algebrasEÄn( EFn) as suggested in (Bombelliet al., 1987).

(c) A reticular analogue of the Minkowski metricηµν = diag(−1,+1,
+1, +1) onM is determined by the causal incidence algebraEÄn as-
sociated with the causal setEFn also as suggested in (Bombelliet al.,
1987).66 It must be emphasized however that in order to determine an in-
definite Lorentzian spacetime metric such asηµν , the causally interpreted
finitary incidence algebras must be used, not the topological ones. This is
because, as it was shown in (Dimakis and M¨uller-Hoissen, 1999), the dis-
crete metricg that is naturally defined on a discrete differential manifold
such as the finitary topological incidence algebra of (Raptis and Zapatrin,
2000), is positive definite (Riemannian), rather than indefinite (pseudo-
Riemannian or Lorentzian). This is the “signature problem” alluded to in
the introduction. The solution of the “signature problem” by using causets
instead of topological posets justifies Finkelstein’s (1988) and Sorkin’s
(1995) demand for a physical causal or temporal topology instead of an
unphysical spatial one, as we emphasized in the previous section.

(d) The Kähler-Cartan differential operatord that defines the differential
structure ofM in (b) is a flat connection on the differential triad sheaf
(M,Ä, d) (Mallios, 1998a), as it is expected to be for the flat Minkowski
base spaceM. In (Dimakis and Müller-Hoissen, 1999), a connection
∇ and its associated curvatureR := −∇2 are defined, and compatibility
conditions between∇ and the definite metricg are given that make the
connection a metric one. However, since as it was mentioned in (c),g is
a positive definite metric,∇ will not do, for we are looking for a pseudo-
Riemannian (Lorentzian) connection on our finsheaves of qausets. Fur-
thermore, as it was also shown in (Dimakis and M¨uller-Hoissen, 1999), for

65That is to say, “differentiability implies continuity”—the classic motto in university Calculus.
66As we mentioned in the introduction, the work of Robb (1914) already shows that causality as a

partial order determines a Lorentzian metric up to its determinant (spacetime volume measure). See
also (Bombelli and Meyer, 1989; Sorkin, 1990a,b).
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the most general (universal) discrete differential calculus on a discrete dif-
ferential manifold,∇ reduces to the flat (because nilpotent) K¨ahler-Cartan
differentiald, so that there can be no discrete (not even positive definite,
i.e., Riemannian) “gravity” on it. This is the “flatness problem” alluded to
in the introduction. The flatness problem will be tackled in the next section
by a straightforward localization or gauging of qausets in their finsheaves.

(e) Finally, for the sheaf of global orthochronous Lorentz transformations
that we expect to arise as the group sheaf (Mallios, 1998a) of (global)
symmetries of its adjoint or associated flat Minkowskian sheaf (M,Ä, d)
from an inverse system of finsheavesGn = Ln( EÄn) in the same way that
the flat differential triad (M,Ä, d) arises from an inverse system of the
finsheavesESn = EÄn( EFn), the work of Zeeman (1964) provides significant
clues. The key idea from (Zeeman, 1964) for our finitary considerations
here is that when causality is modeled after a partial order between events
inM, its causal automorphisms constitute a groupG isomorphic to the
conformal orthochronous Lorentz groupL+. Also,G is, by definition, the
group of homeomorphisms ofM regarded as a causal space having for
topology the causal Alexandrov (1956a,b, 1967) one (Torretti, 1981). It
follows that the maps in the finsheafGn, being by definition local homeo-
morphisms of the qausetEÄn, respect the local (quantum) causal topology
of EÄn which, in turn, effectively corresponds to the generating or germ
relationEρ. These are the finitary (and quantal) analogues of the causal au-
tomorphisms in (Zeeman, 1964), as we argued earlier. In fact, in the next
section, by a heuristic implementation of the FEP, FLP, and FLRP given
in section 2, we will use these finitary causal morphisms to define a fini-
tary, quantal, and causal gauge-theoretic version of Lorentzian gravity on
the gaugedEMn by supplying it with a nonflatgn-valued spin-Lorentzian
connectionAn and its associated curvatureFn.

For the time being we note that the expected Minkowskian classical limit
G-sheaf (X ⊂M, d,Ä, L+), being flat, admits of global sections (Mallios,
1998a), a result which in physical parlance is known by the following fact: there is a
global inertial coordinate patch (frame or gauge) covering the entire flat Minkowski
space (Torretti, 1981). However, in a curved spacetimeM, there are only local
inertial frames (gauges) covering (i.e., with origin soldered at) its point events
according to the CEP. These are independent “kinematical frames” (gauge pos-
sibilities) as we said in section 2 and this “kinematical independence” or “gauge
freedom” motivates us here to define a nonflat connection on (i.e., to gauge) the
flat Gn-finsheaf EMn. Then, the resulting gauged, hence curved, finsheaf will not
admit global sections (Mallios, 1998a).

We close this section by commenting on the operational significance of our
Gn-finsheaf model of quantum causality and its (global) causal symmetries. If one
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takes seriously the conjecture above about the convergence of the inverse system
or netK := { EMn} to the classical flat MinkowskianG-sheaf (X ⊂M,Ä, d, L+)
at maximum power of resolution or infinite localization ofX into its point events
à la Sorkin (1991) and Raptis (2000a), then sound operational meaning may be
given to qausets and their finitary symmetries in complete analogy to the one given
to topological poset substitutesFn of bounded regionsX of continuous spacetime
manifoldsM in (Sorkin, 1991, 1995) and their quantal algebraic relativesÄn(Fn)
in (Raptis and Zapatrin, 2000, in press). Since theFns were seen to converge
to X, they were taken to be sound approximations of its point events, whereby
a coarse determination of the locus of an eventx in X is modeled by an open
set or region about it. We simulate this semantic model for theFns in the case
of our qausetsEÄn as follows: we introduce a new “observable”67 for spacetime
events called “causal potential (or propensity) relative to our locally finite (coarse)
observationsUn of them,” symbolized byEφn, so that the causal relationx→ y
between two events inEFn can be read as “xhas higher causal potential thany” (i.e.,
formally: Eφn(x) > Eφn(y)).68 Thus, causality may be conceived as “causal potential
difference between events relative to our observations of them.”69

This definition of Eφn applies in case the causetEFn is the causally interpreted
finitary poset substituteFn of a bounded spacetime regionX as defined in (Raptis,
2000b). If Fn derives from the locally finite open coverUn of X, Eφn in EFn may
be read as follows: the causal potentialEφn of an eventx in X relative to our
observationsUn of X70 corresponds to the “nerve”N coveringx relative toUn,

67To be established as a dynamical variableAn in the next section where we gaugeEMn.
68This formal labeling of events byEφn is in complete analogy to the natural numberN-labeling of

eventsà la Rideout and Sorkin (2000). There the sequential growth dynamics proposed for causets
was seen to be independent from theirN-labeling, thus in some sense independent of an external
(background) discreteN-valued time gauge parameter (i.e., it is “external time-covariant”). In the
next section we will argue that, similarly, the reticular gauge connectionDn, based on which the
dynamical law for qausets is expected to be formulated as an equation between sheaf morphisms
(Raptis, in preparation-c), is gaugeUn-independent, thus alsoAn-covariant. See also (Raptis, in
press, 2001) for more on this, but from a more categorical or topos-theoretic perspective.

69In a plausible “particle interpretation” of our reticular scheme, whereby a network of causet (or
qauset) connections is interpreted in the manner of Dimakiset al. (1995) as the reticular pattern
of the dynamics of particles or quanta of causality—which may be called “causons” for obvious
reason—the causal connectionx→ y has the following rather natural physical interpretation in
terms of the causal potentialEφn: “a causon descends from the eventx of higher causal potential
to the eventy of lower causal potential.” This is in literal analogy, for instance, with the motion
of an electron in an electromagnetic potential gradient (or connection!) fieldA, hence the natural
denomination ofEφn as “causal potential.”

70One can equivalently call it “the causal potential of an eventx in X at the limit of resolution of
X corresponding toUn” (Cole, 1972; Raptis, 2000a). The definition ofEφn as being relative to our
coarse spacetime observations is reflected by its index which is the same as that of the locally finite
open coverUn of X—a finiten signifying a pragmatic limited (finite), but at the same time coarse
and perturbing, power of resolution ofX into its point events.



P1: FOM

International Journal of Theoretical Physics [ijtp] PP233-343694 September 11, 2001 9:10 Style file version Nov. 19th, 1999

1914 Mallios and Raptis

wherebyN (x) := {U ∈ Un | x ∈ U } (Raptis and Zapatrin, 2000).71 Then, at the
level of resolution of the spacetime manifold—now regarded as a causal space—
corresponding toEFn, x→ y (i.e., “x causesy”) means operationally thatN (y) ⊂
N (x) (i.e., “every (rough) observation ofy is a (coarse) observation ofx”) 72 ;
thence,Eφn(x) > Eφn(y).

In terms of the definition of the smallest open sets inUn containingx and
y, 3(x) and3(y), given in section 3 and in (Raptis, 2000b; Sorkin, 1991), that
is to say,3(x) := ⋂{U ∈ Un | x ∈ U } ≡⋂N (x),N (y) ⊂ N (x) reads3(x) ⊂
3(y) with “⊂” standing for strict set-theoretic inclusion. This is precisely how
the topological partial order→ in Fn was defined in (Sorkin, 1991), only in our
EFn it is reinterpreted causally (Raptis, 2000b).73 It must be mentioned that such
a conception of (quantum) causality as a difference in cardinality (or degree) was
first conceived in a different mathematical model by Finkelstein (1969), whereas
in (Breslavet al., 1999), and in a model similar to ours, the collectionUn of open
sets were assigned to teams (or organizations) of “coarse observers” of space-
time topology and it is explicitly mentioned that the relationsx→ y means that
“ the event x has been observed more times(by the team of observers)than the
event y.” There, however, the “→” obtained from Sorkin’s “equivalence algorithm”
was seen to still have its original topological meaning and it was not given a directly
causal significance like in our theory.74

From the definitio ofEφn above, it follows that the generator of local (i.e.,
contiguous) causal potential differences between events inEFn corresponds to
the relation of immediate causality

∗→ linking events, sayx and y, such that
1 Eφn(x, y) := Eφn(x)− Eφn(y) = 1.We may symbolize this “contiguous causal po-
tential difference”—the “local germ of the quantum causal potential,” byEφ*

n. If
we pass to the qausetEÄn associated withEFn, or equivalently, to the finsheaf
ESn of qausets, the aforementioned generator of causal potential differences as-
sumes a completely algebraic expression asEρ. Again, we recall from section 3
that I p Eρ Iq⇔I p Iq(6=I p Iq) ⊂6= I p ∩ Iq generates the quantum causal Rota topology
of ESn by relating primitive idealsI p andIq in the primitive spectrumES( EÄn) (p, q
∈ EFn) if and only if p→ q and /∃r ∈ EFn : p→ r → q (i.e., iff p

∗→ q in EFn)
(Breslavet al., 1999; Raptis, 2000b).

71In (Raptis and Zapatrin, 2000), nerves were seen to be simplicial complexes and the topological
discretization of manifolds based on them is due to Alexandrov (1956a,b, 1961).

72See (Breslavet al., 1999) for a similar operational semantics, but applied to the topological not to
the causal structure of spacetime like we do here.

73Note that event vertices in the causetEFn that are causally unrelated (i.e., “space-like”) are covered
by different nerves inUn of equal simplicial degree (Raptis and Zapatrin, 2000). They are the
reticular versions of equal-time spacelike 3-slices of a (globally) hyperbolic spacetime manifold.

74That is, the quantum observable or dynamical variable in their theory is topology proper, not local
causality. See (Raptis and Zapatrin, in press) for more discussion about this distinction.
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Here, in the algebraic setting of qausets, the generator of quantum causal-
ity (i.e., the germEφ∗n of the quantum causal potentialEφn) relative to our finitary
spacetime observations inUn, Eρ, has the following operational and quantalà la
Heisenberg (because noncommutative algebraic) meaning that reads from its very
algebraic definition: point events inEÄn, which correspond to primitive ideals in
ES( EÄn),75 have a product ideal that is strictly included in their intersection ideal,
with the “directedness” (asymmetry) of their immediate quantum causal connec-
tion, say “from-p-to-q” ( p

∗→ q), being reflected in the noncommutativity of their
corresponding ideals inEÄn (i.e., I p Iq 6= I p Iq).76 This operational description of

75Recall from (Breslavet al., 1999; Raptis, 2000b; Raptis and Zaptrin, 2000) and section 3 the defini-
tion of the primitive ideals in the corresponding quantum topologicalÄn(Fn) : I p := span{|q〉〈r | :
|q〉〈r | 6= |p〉〈p|}; where|q〉〈r | := (q→ r ) ∈ Fn. Parenthetically, it is rather interesting to ob-
serve in this definition of the primitive ideals (points) in the quantal topological incidence algebras
Än(Fn) that the elements (ket-bras) that constitute them are quantal acts of determination of what
in the classical limit space will emerge as “momentum (covector) states” and serial concatenations
thereof (i.e., “spacetime time-like paths”); see physcial interpretation of theÄis (i ≥ 1) in (Raptis
and Zapatrin, 2000). By this very definition of theI ps in S(Än(Fn)), we see that the operations
of determination of pure quantum spacetime states (events) inÄn, namely, the elements ofÄ0

(the |p〉〈p|s in the defintion of theI ps above; Raptis and Zapatrin, 2000), are excluded from them
(Raptis and Zapatrin, in press). So, operations of determination of what classically (i.e., at the non-
pragmatic decoherence limit of infinite refinement of the spacetime continuum into its point events)
appear as momentum states tangent to spacetime “position states” (point events) are “incompatible”
or “complementary” in Bohr’s sense with (i.e., they exclude) quantum acts of localization of the
latter. This observation shows that some kind of quantum uncertainty is built into our Rota algebraic
schemeab initio thus it further justifies the physical interpretation of the limit of infinite localization
of spacetime events as Bohr’s correspondence principle (Raptis and Zapatrin, 2000). The quantum
character of the noncommutative toplogy generated by the local (and dynamical) quantum causality
Eρ is analytically studied in (Raptis, in press.)

76This is a first indication of a fundamental noncommutativity of (acts of localization of) “points”
(i.e., “coarse spacetime events”) underlying quantum causal topology in a model like ours (where
“points” are represented by primitive ideals in the primitive spectraES of the incidence algebrasEÄ
involved). In a coming paper (Raptis, in press), the incidence algebras modeling qausets here, as
well as their localizations, are studied in the ligth of scheme theory (Hartshorne, 1983; Shafarevich,
1994) and a noncommutative dynamical local quantum causal topology for (at least the kinematics
of) Lorentzian quantum gravity is defined based on such nonabelian schematic algebra localizations
in much the same way to how Noncommutative Algebraic Geometry was defined in (Van Oystaeyen
and Verschoren, 1981) based on nonabelian Polynomial Identity (PI) ring localizations—it being
understood that Rota algebras can be regarded as PI rings (Freddy Van Oystaeyen in private com-
munication). It must be a fruitful project to compare the resulting “noncommutative topology for
curved quantum causality” in (Raptis, in press) with the one defined and studied in (Van Oystaeyen,
2000a). The second author (IR) wishes to thank Freddy Van Oystaeyen for motivating such a study
in a crucial private communication and in two research seminars; see (Van Oystaeyen, 2000b).
Ultimately, the deep connection for physics is anticipated to be one between such a noncommuta-
tive conception of the local quantum causal topology of spacetime and the fundamental microlocal
quantum time asymmetry expected of “the true quantum gravity” (Penrose, 1987). Again, such a
fundamental time asymmetry in a curved finitistic quantum causal space similar to ours has already
been anticipated by Finkelstein (1988). It is also entertained in (Raptis, in press).
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quantum causality inEÄn relative to our coarse observations of events in a bounded
region of spacetime—now interpreted as a causal space, follows from the opera-
tional description of causality in the causetEFn from which it derives via the causal
potential “observable”Eφn defined above.

All in all, (quantum) causality is operationally defined and interpreted as
a “power relationship” between spacetime events relative to our coarse obser-
vations (or approximate operations of local determination) of them, namely, if
eventsx andy are coarsely determined byN (x) andN (y) with respect toUn, and
N (y) ⊂ N (x), then “x causesy.” The attractive feature of such a definition and
interpretation of causality is that, by making it relative toUn, we render it “frame-
or observation-dependent,”77 ultimately, relativistic.78

In the same way, one can give operational meaning to the finitary local (quan-
tum) causal automorphisms of theEÄns in ESn mentioned above. They represent
finitary operations of determination of the local symmetries of quantum causality
as encoded in the finsheafESn and they too are organized in the group finsheaf
Gn. The operational interpretation of the elements ofGn as coarse reticular (and
quantal) replacements of the continuous local orthochronous Lorentz Lie symme-
tries of the smooth gravitational spacetime of GR will become transparent in the
next section when we gauge the flat MinkowskianGn-finsheaf EMn by providing
a nonflatgn-valued connection 1-formAn on it.

5. GAUGING QUANTUM MINKOWSKI SPACE:
NONFLAT CONNECTION ON ~Sn

The reader was prepared in the previous sections for the present one where we
will attempt to curve the flat and quantalGn-finsheaf EMn := Gn( ESn) by gauging or
localizing it. As it was repeatedly mentioned earlier, this procedure is tantamount

77One may think of the openUs inUn as some sort of “rough coordinate patches” or “coarse frames”
or even as “fuzzy gauges” (Mallios, 1998a) covering or measuring coarsely (i.e., approximately
localizing) the point events inX.

78Recall that the causal potentialEφn of events is defined relative to our coarse observationsUn of
them, so that, as we will see in the next section, its localization (gauging) and relativization will
effectively amount to establishing a local transformation theory for it that respects its dynamics
(due to a finitary sort of Lorentzian quantum gravity), in the sense that this dynamics becomes
independent of the level of resolution corresponding to our observationsUn of spacetime into its
events, or equivalently, it becomes independent of the local gauges (frames)Un that one lays out to
chart the spacetime events and measure, albeit coarsely, physical attributes such as the gravitational
field “located there” (Mallios, 1998a). This will be then the transcription of the fundamental principle
of GR, which requires that the laws of physics are invariant under the diffeomorphism group of the
smooth spacetime manifold Diff(M ) (i.e., the principle of General Covariance), in a sheaf-theoretic
model for a curved finitary quantum causal space: “the laws of physics are equations between sheaf
morphisms”—the main sheaf morphism being the connectionD (Mallios, 1998a). We will return
to this principle in section 5 where we defineDn as a finsheaf morphism in our scheme and further
discuss its quantum physical implications in section 6.
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to defining a reticular nonflat spin-Lorentzian connectionAn
79 that takes values

in the orthochronous Lie algebragn ≡ `+n of the group finsheafGn adjoint to ESn

consisting of the latter’s local quantum causal symmetries—the finitary substitute
of the continuous orthochronous Lorentz Lie group manifoldL+ which, in turn,
is the structure group of (global symmetries of) the flatGn-finsheaf EMn. The re-
sulting curvedGn-finsheaf EPn := ( EFn, EÄn, Ln,Dn := dn +An) may be regarded
as a finitary, causal and quantal replacement of the classical kinematical structure
P on which GR is formulated as a gauge theory of a spin-Lorentzian connection
1-formA.

As it was also alluded to in the introduction, our contending that the curvedGn-
finsheaf EPn is a finitary, causal and quantal replacement of the classical
CartanBergmannG-bundleP = (X,Ä, L+,D := d +A), basically rests on the
idea that an inverse system of the former curved finsheaves of qausets yields the
latter as a classical gravitational spacetime structure (Raptis, 2000a) at the oper-
ationally ideal limit of finest resolution or localization ofX into its point events,
their causal ties and the local symmetries thereof—which limit, in turn, may be
interpreted as Bohr’s Correspondence Principle yielding classical structures from
quantum ones (Raptis and Zapatrin, 2000).

Thus, we consider a bounded regionX of a curved smooth spacetime manifold
M. We assume that gravity is represented by a nonflatsl(2,C)-valued connection
1-formA on the curved CartanBergmannG-bundleP = (X,Ä, L+,D = d +A).
First we discuss a mathematical technicality that our finsheaf-theoretic model
should meet in order to be able to define a (nonflat) connectionDn

80 on the (flat)

79The reader should note the indexn given to the connectionA that is the same as the one given to the
causetEFn, its associated qausetEÄn and the latter’s local quantum causal symmetries`

↑
n . Properly

viewed, the connectionA on theGn-finsheaf EMn := ( EFn, EÄn, dn, Ln) in focus inherits the latter’s
“finite degree or energy of resolutionn” of the regionX of the curved spacetime manifoldM by our
coarse observationsUn of its events, their causal ties and the symmetries of the latter (Cole, 1972;
Raptis, 2000a). The reader should notice that the indexn is also given to the reticular K¨ahler-Cartan
differentiald in EMn just to remind one of its discrete characterà la Dimakiset al. (1995).

80Note that until now we used the gauge potentialA for the mathematical concept of connection
D, when, in fact,A is just the part ofD = d +A that makes it nontrivial (i.e., nonflat) (Mallios,
1998a). This is the physicist’s “abuse” of the concept of connection, presumably due to his rather
“pragmatic” or at least “practical” attitude towards mathematics, namely, that he is interested on
the part ofD that is responsible for curvature (which can be physically interpreted as the gauge
potential of a physical force). In fact, the substitutiond→ D = d +A is coined “gauging” in
physics jargon, whend is from a mathematical point of view a perfectly legitimate connection;
albeit, a trivial (i.e., flat) one (Mallios, 1998a). The same “abuse” ofD is encountered in (Baez
and Muniain, 1994) where only the gauge potentialA is coined “connection.” Here, we too adopt
a physicist’s approach and by “gauging our flat Minkowskian principal finsheafEMn” essentially
we mean “adjoining a nonzero connection termAn to its flat differentialdn.” This asymphony
between the mathematician’s and the physicist’s conception of the notion of connection aside, one
should always keep in mind thatD is a generalized differential operator, with its nonzero partA
generalizing or “extending” by the process of gauging the usual flat differential operatord.
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finsheaf EMn. Two sufficient conditions for the existence of a connectionD on an
algebra or vector sheaf or bundle over a manifoldM , regarded as a topological
space, are thatM is paracompact and Hausdorff81 (Mallios, 1998a). It is expected
that, since our finsheaves of qausets are finitary (and quantal) replacements of an
at leastT1

82 and relatively compact83 topological spaceX (Raptis, 2000a; Sorkin,
1991), if we relaxT2 to T1 and paracompactness to relative compactness, we are
still able to define a connectionDn on a vector or algebra sheaf over it such as our
EMn (Raptis, 2000a). SoDn exists (i.e., it is “defineable”) onEMn. In fact, we know

that dn is already defined on the qauset stalks ofEMn à la Dimakis and Müller-
Hoissen (1999) or Zapatrin (in press), and that it effects sub-sheaf morphisms
dn : EÄi

n→ EÄi+1
n there (Mallios, 1998a); albeit, it is a flat connection (Dimakis

and Müller-Hoissen, 1999; Mallios, 1998a). In turn, thisDn = dn on the finitary,
causal, and quantal Minkowskian finsheafEMn means thatAn = 0 throughout
EMn, so that by our physical terminology the latter is an ungauged, thus flat,

finsheaf.84

To curve the flat finsheafEMn by adjoining to its flat connectiondn a nonzero
termAn, we immitate in our finitary context how the curved smooth spacetime
manifoldM of GR may be thought of as the result of localizing or gauging the flat
Minkowski spaceM of SR. Locally, (i.e., event-wise), one raises as a “vertical
structure” an isomorphic copy ofM over each spacetime eventx ∈ X ⊂ M , thus
implementing the CEP of section 2. Hence formally,M acquires an event-index
x(∀x ∈ X),Mx, and may be regarded as some kind of fiber space overx. In
view of the differential (i.e.,C∞-smooth) character ofM , which in turn may be
thought of as implementing the CLP discussed in section 2 (Einstein, 1924),Mx is
geometrically interpreted as the space tangent toM atx. Totally,TM :=⋃x∈MMx

is the locally Minkowskian tangent bundle ofM (Göckeler and Sch¨ucker, 1990)
having for fibersMx—local isomorphs of flat Minkowski space.

Then, the term “gauging” effectively corresponds to regarding these local
isomorphs of flat Minkowski space as “independent kinematical worlds,” in the
sense that two vectorsv andv′ living in the vector space fibersMx andMx′ ,

81We recall that a topological spaceM is said to be paracompact if every open cover of it admits a
locally finite refinement. Also,M is said to be Hausdorff orT2 when it satisfies the second axiom
of separation of point set topology which holds that every pair of points ofM have nonintersecting
(disjoint) open neighborhoods about them.

82We recall that a topological spaceX is said to beT1 if for every pair of pointsx andy in it there
exist open neighborhoodsOx andOy containing them such thatx 6∈ Oy andy 6∈ Ox .

83As it was also noted earlier, a topological spaceX is said to be relatively compact, or bounded in
the sense of (Sorkin, 1991), when its closure is compact.

84As we also mentioned in the previous section, the important point to retain from the discussion
above is that in a sheaf-theoretic context like ours the role of connectionD is as a sheaf morphism
(Mallios, 1998a). We will come back to it shortly when we formulate a finsheaf-theoretic version
of the Principle of General Covariance of GR in the gaugedEMn to EPn.
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respectively, are “incomparable,” in that one is not allowed to form linear combi-
nations thereof.85 Alternatively, one may describe this in a more geometrical way
by saying that in a gauged space, such as the vector bundleTM (Göckeler and
Schücker, 1990), there is no natural relation of distant parallelism or linear super-
position between the elements residing in its fibers. A “rule” that enables one to
compare vectors at different fiber spaces, thus it establishes some kind of relation
of distant parallelism or, linear algebraically speaking, “distant linear combine-
ability” in TM, is provided by the concept of connectionD (Mallios, 1998a). The
geometrical interpretation ofD, and one which shows an apparent dependence of
this concept on the background geometric spacetime manifoldM86 is as a par-
allel transporter of vectors along smooth curves inM joining x with x′. Then,
curvatureF , in the classical model for spacetime corresponding to the differential
manifold M , is geometrically conceived as the Wilson anholonomy ofD when
the latter transports vectors parallely along smooth closed curves (C∞-loops) in
M—certainly a nonlocal conception of the action ofD.87

The second problem that we face is one of physical semantics: we want to
interpret the nonflat partAn of Dn in a finitary causal way. In the classical curved
spacetime modelP,A, apart from its usual interpretation as the gravitational gauge
potential, may be physically interpreted as the smooth dynamically variable (field
of the) local causal connections between the events of theC∞-smooth spacetime
regionX. Since the fibers of the curvedTM (or the Minkowskian covectors in the
Ä1 sub-bundle ofP) are local isomorphs of flat Minkowski space, the action of the
spin-Lorentzian gravitational connection 1-formA on Minkowski vectors living in
TM’s fibers, besides its geometrical interpretation as “parallel translation” above,

85For instance, one is not supposed to be able to compute their differencev′ − v which is the crucial
operation for defining the differential operatord in general.

86And we say “apparent,” because, as we will see shortly, in our schemeDn := dn +An does not
depend essentially on the geometric base spacetime, since it derives locally from the very algebraic
structure of the stalks of the finsheaf of qausets (i.e., from the structure of the quantally and causally
interpreted incidence algebras). This is the most important lesson to be learned from the Abstract
Differential Geometry theory developed in (Mallios, 1998a,b), namely, thatD, the main object with
which one can actually do Differential Geometry, is of an algebraic (i.e., analytic) nature and does
not depend on any sort of “ambient geometric space.” For instance, the two global (topological)
conditions used in the conventional Calculus on manifolds to establish the existence ofD on M,
namely, that the latter is a paracompact and Hausdorff topological space, are sufficient, but by
no means necessary. Such an independence is welcome from the point of view of both classical
and quantum gravity where the spacetime manifold, regarded as an inert geometrical background
base space, has shown to us its pathological, “unphysical nature” in the form of singularities and
the nonrenormalizable infinities that plague the field theories defined on it (Mallios, in press, in
preparation).

87In contradistinction to this classical geometric conception of curvature, in the sense that it depends
on the existence of spacetime loops inM and that it is the effect of the action ofD as the parallel
transporter of geometric entities (smooth tensor fields) along them, we will be able to give shortly
a purely local sort of curvatureFn stalk-wise in our gauged finsheaves of qausets.
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may be alternatively interpreted in a causal way as follows: point-wise on the
curve along which the vectors are transported, the transitive, inertial Minkowskian
causality→ is preserved.88 Equivalently put, ifx is a point in the curve and
v(x) ⊂Mx is the value of a vector fieldv at x,89 the “coupling”A(x)[v(x)] may
be thought of as a local Lorentz transformation (i.e., an infinitesimal spacetime
isometry) ofv(x); hence, by definition, it preserves the local causal structure of the
curvedTM, namely, the Minkowski lightcone based at (or with origin)x ∈Mx.
In this sense one may equivalently interpret the gravitational gauge connectionA
as the dynamical field of local causality, as we noted in section 2. We adopt this
physical interpretation for our finitaryAn.

Now we come to the crucial point of the present paper that was briefly men-
tioned at the end of section 2 and in footnote 88 above concerning metric con-
nections. From a causal perspective, like the one we have adopted here, a sheaf
may be the “natural” or “proper” mathematical structure to model such (dynami-
cally variable) local causal connections such asA, because of the following rather
heuristic argument which in a sense motivated us to study finsheaves of qausets
in the first place: by definition, a sheaf is a local homeomorphism (Bredon, 1967;
Mac Lane and Moerdijk, 1992; Mallios, 1998a; Raptis, 2000a), so that when one is
interested in the (dynamically varying) causal topology of spacetime like we are in
the present paper where ourGn-finsheaf of qausets is supposed to be the “quantum
discretization” (Raptis and Zapatrin, 2000) of the local causal topology (i.e., the
causal connections between events) and its local symmetries of a bounded region
X of a curved smooth spacetime manifoldM , a sheaf preserves precisely the gen-
erating relations or germs of the local causal topology of the base space. But, in
our case, the latter are precisely the immediate causality (contiguity or covering)
relations

∗→ in the causal setEFn that are mapped by the sheaf (regarded as a local
homeomorphismES) to the germ relationsEρ of the quantum causal Rota topology
of the qausetsEÄn, thus defining the finsheafESn of qausets over the corresponding
causet.

Also, the adjoint sheafLn, it too regarded as a local homeomorphismEλ
preserves the generator (i.e., the generating relation or “local germ”)Eρ of the
quantum causal topology ofEÄn, thus it consists of local, finitary causal and quantal
versions of the orthochronous Lorentz groupL+ = SO(1, 3)↑. Altogether, a local
EÄ1

n-section90 of the Gn-finsheafLn( ESn) associates, via the compositionEλn ◦ Esn
of the two local homeomorphisms defining the finitary sheafESn and its adjoint
group sheafLn, with a contiguous causal arrowx

∗→ y in the causetEFn a reticular

88One may conceive in this local-causal sense the standard requirement in GR that “the connection
is compatible with the metric tensor fieldgµν ” (i.e., thatD is a metric connection).

89Technically, a vector field is a cross-section of the vector bundleTM (Göckeler and Sch¨ucker, 1990;
Von Westenholz, 1981).

90The reader should note the arrow over the sub-sheaf spaceÄ1
n of discrete 1-forms in EMn which

again shows its causal interpretation, as well as its finite degree or energy of resolution indexn.
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Lorentz local (infinitesimal) transformation in [`+n ]x which, in turn, may be thought
of as “reticularly rotating” or “finitarily boosting” the quantal Minkowskian vectors
in the stalk [EÄn][x]

91 of EÄn( EFn) over the eventx. Thus we see how natural it is
to define a finitary spin-Lorentzian connectionAn as a localEÄ1

n-section of the
Gn-finsheaf (EFn, EÄn, dn, Ln) =: EMn.

However, as we said earlier, since the latter is flat, it admits global sections
(Mallios, 1998a). Flatness means thatAn ≡ 0 throughout EMn (Mallios, 1998a),
or equivalently, that “the connection is identically equal to the trivial constant zero
global EÄ1

n-section of theGn-finsheaf EMn.” In our finitary causal context, we at-
tribute this to the constancy (i.e., the nondynamical character) and the transitivity
of the inertial Minkowskian causal connection→ in EFn, a property that is cer-
tainly nonlocal (Finkelstein, 1988; Raptis, 2000b).92 In fact, the “unphysicality”
of a crystalline rigid causality relation modeled after a transitive, and due to this,
global partial order, is already implicitly noted by Zeeman (1964) and explicitly
by Finkelstein (1988) who also emphasized the need for a dynamical finitary local
causal topology (i.e., effectively for a nontrivial connection on a causal finsheaf,
as propounded here).93

Indeed, like in Finkelstein (1988, 1991), we regard the germ relation
∗→of the

local causal topology ofEFn, or its finsheafEs-imageEρ of EÄn, as being dynamically
variable— a “quantum observable” (Raptis and Zapatrin, in press). This is achieved
by localizing or gauging the qauset finsheafESn and its adjointLn

94 which, in
turn, corresponds to implementing a nonzero (nonflat) dynamically variablegn-
valued gauge connectionAn realized as a localEÄ1

n-section of theGn-finsheaf
EPn = ( EFn, EÄn, Ln,Dn). Thus,An effectively represents a finitary gravitational
dynamics of qausets.

SinceAn represents the dynamics of the germEρ of the quantum causal topol-
ogy of the qauset stalks ofEPn, it is defined locally,95 thus purely algebraically.96

The detailed algebraic argument that leads to the expression forAn in terms of
Eρ is left for (Raptis, 2001). For the present paper it suffices to give the usual
gauge-theoretic expression for the curvature associated withDn : Fn := D2

n =
Dn ∧Dn = [Dn,Dn]97 (Baez and Muniain, 1994; Dimakis and M¨uller-Hoissen,
1999; Göckeler and Sch¨ucker, 1990; Mallios, 1998a) and note that it is defined
entirely locally-algebraically stalk-wise in the sheaf without reference to any

91See (Raptis, 2000a) for notation and analytical definition of stalks of the finsheavesSn(Fn).
92See the CEP and its finitary formulation FEP in section 2.
93See also opening quotation from (Finkelstein, 1991).
94Of course, when one localizes or gauges qausets, it follows that their local quantum causal symme-

tries are gauged as well.
95That is to say, stalk-wise in the sheaf.
96Since the stalks are the causally and quantally interpreted incidence Rota algebras.
97Where “∧” denotes Cartan’s exterior product and “[. , .]” “commutator.” It follows thatFn is a
`+n -valued section of theEÄ2

n, sub-sheaf ofEPn, as in the usual differential calculus on manifolds.
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loop-anholonomy with respect to an ambient smooth geometric base spacetime.
As we argued earlier, this is quite welcome from the point of view of quantum
gravity.Fn may be physically interpreted rather freely in our scheme as a finitary,
causal and quantal expression of Lorentzian gravity.

Now that we have mathematically defined and physically interpretedAn

(and its curvatureFn) on EPn, we give an alternative physical interpretation for it
more in line with the operational interpretation of finsheaves in (Raptis, 2000a),
whereby, the latter were regarded as “approximations of the continuous spacetime
observables.” So again, letX be a bounded region in a curved smooth spacetime
manifold M on whichA lives (inP). As in (Sorkin, 1991) the open setsU in the
locally finite open coverUn of X were physically interpreted as “coarse acts of
localization (local determination) of the continuous topology carried byX’s point
events” which, in the finsheafSn(Fn) of (Raptis, 2000a), translates to “coarse
acts of local determination of the continuous (i.e.,C0-topological) spacetime ob-
servables,”98 so similarly we lay outUn to “measure” or chart roughly the causal
topology and the causal symmetries of the bounded spacetime regionX in the
gravitational spacetimeM .99 Then, we organize our observations of the dynamics
of local quantum causality into the curvedGn-finsheaf of qausetsEPn as described
above. In EPn, we perceive as “gravitational gauge potentialsA” the gn-valued
EÄ1

n-sectionsAn.
So, in the manner that we described theaufbauof EPn in sections 2–5, it

is straightforward to interpretAn as “equivalence classes of gravitational gauge
potentials” relative to our coarse and dynamically perturbing observationsUn of
the spacetime’s causal topology. Equivalently, following verbatim the physical in-
terpretation of finsheaves in (Raptis, 2000a),An([x]) stands for a collection of
gravitational gauge potentials that are “indistinguishable” at the finite leveln of
resolution ofX into its point events.100 “Indistinguishability” may be physically
interpreted here in a dynamical way as follows: the gravitational field is not per-
ceived as varying between any two events in the same equivalence class [x].101

Furthermore, and here is the operational weight that the sheaf-theoretic scheme
of ours carries, it is our coarse operations of determination of the dynamical local
quantum causal topology, which are organized intoEPn, that are effectively en-
coded inAn, so that, by the end of the day, it is not the point events ofX per se

98Which by definition preserve the local Euclidean manifold topology ofX.
99Following the terminology in Mallios (1998a), we call the elementsU of Un “coarse (or fuzzy)

local gauges,” since they stand for rough acts of measurement of the local structure ofX.
100Thus, we tacitly assume that the spacetime events are not only surrogate carriers ofX’s physical

topology (Raptis, 2000a; Sorkin, 1991), but also of its other physically observable attributes—the
gravitational or “locality” field being the one in focus here.

101This interpretation is consistent with our FEP of section 2 which, in effect, held that in a finsheaf
over a causetEFn obtained byUn as briefly described in sections 3 and 4, all the frames in the “fuzzy”
or “coarse stalks”EÄn([x]) over [x] are inertial (because “indistinguishable by gravity”) relative to
each other, so to speak.
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that carry information about the dynamics of (quantum) causality; rather, it is our
own dynamically perturbing observations of them that create “it.”102 Then, the
general relativistic character of our sheaf-theoretic scheme may be summarized in
the following: the finitary gravitational connectionDn on EPn is a sheaf morphism
(Mallios, 1998a), which means that the dynamics of local quantum causality is
Un-independent after all.103 This is the (fin)sheaf-theoretic version of the principle
of General Covariance of GR with a strong local-quantal flavor.104

6. DISCUSSION OF THE SOUNDNESS OF~Pn

AND OTHER RELEVANT ISSUES

In this last section of the paper we present four arguments that support that
EPn is a sound model of a finitary, causal and quantal version of Lorentzian gravity.

(a) The FEP of section 2 is satisfied inEPn, since the latter’s stalksEÄn are local
isomorphs of a locally finite, causal and quantal version of Minkowski
space (sections 3 and 4).

The FLRP of section 2 holds inEPn, since the latter’s groupGn-stalks
are finitary, causal, and quantal versions of the orthochronous Lorentz
structure groupL+ of local causal symmetries of GR.

The FLP of section 2 is satisfied inEPn, since the latter’s qauset
stalks are sound models of local quantum causality (section 3 and (Raptis,
2000b)).

The FLSP of section 2 holds inEPn, since the qausets residing in its
stalks coherently superpose with each other (sections 3, 4, and (Raptis,
2000b)).

In section 2 we posited that a sound mathematical model of (the
kinematics of) a finitary curved quantum causal space should meet struc-
turally these four “physical axioms.” Indeed, the structure ofEPn does
meet them.

(b) EPn is an algebraic model for finitary, local, and dynamically variable quan-
tum causality which inherits its operational meaning from the pragmatic

102See the active operational interpretation of dynamical local quantum causality at the end of section 4.
As it was shown in (Raptis, 2000a), it is not the point eventsper sethat are the carriers of the
continuum’s topology as assumed in (Sorkin, 1991), but the (sheaves of algebras of) continuous
observables that occupy this apparently existing continuum. There is no spacetimeper se; rather,
it is from the dynamical relations between (i.e., the algebraic structure of) the objects that inhabit
“it” that “its” properties are extracted (Mallios, 1998a, in press, in preparation; Raptis, in press).

103For a short discussion of this apparently paradoxical situation, namely, that our own coarse local
observationsUn create the dynamical local quantum causality whose dynamics is subsequently
expressed in aUn-invariant (i.e., gauge independentor “covariant”) way, see (c) in the next section.

104SinceDn respects the linear quantum kinematical structure (i.e., the coherent quantum superposi-
tions of quasets) stalk-wise inEPn.
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and quantal interpretation given to quantum topological incidence alge-
bras in (Raptis and Zapatrin, 2000), hence also to their causal relatives
in (Raptis, 2000b).105 Moreover, from (Raptis and Zapatrin, 2000) it in-
herits its essentially alocal character, whereas, together with the physical
interpretation of finsheaves (of algebras) in (Raptis, 2000a), it manifests
its essential noncommitment to spacetime as an ether-like background
geometricalC∞-smooth base point set manifold.

(c) The local structure of classical gravitational spacetime, namely, the event
and the space of Minkowskian directions tangent to it, arise only at
the operationally ideal limit of infinite localization106 of an inverse sys-
tem of EPns (Raptis, 2000a). The latter limit, yielding the classical gravi-
tational sheaf or bundleP in a manner analogous to how the sheafS(X)
of continuous functions on a topological spacetime manifold arises at
infinite refinement of topological finsheavesSn similar to our causalEPns
(Raptis, 2000a), may be physically interpreted as Bohr’s Correspon-
dence Principle (Raptis and Zapatrin, 2000). This further supports the
quantal character ofEPn.

All in all, putting together the physical interpretations of the theoret-
ical schemes proposed in (Raptis and Zapatrin, 2000, in press), (Raptis,
2000b), and (Raptis, 2000a) that are amalgamated into our modelEPn for
the dynamics of finitary quantum causality as described in sections 3–5,
we may summarize the physical interpretation ofEPn to the following:
it represents alocal, discrete, causal, and quantal operations of determi-
nation of the dynamics of causality and its symmetries in a bounded
region of a curved smooth spacetime manifold with the latter not ex-
isting in a physically significant sense,107 but only viewed as providing
a surrogate scaffolding on which we base (i.e., locally solder our own
operations of observing “it,” which are then suitably organized into al-
gebra finsheaves. This collective physical interpretation ofEPn is well
in accord with the general philosophy of QT holding that inert, back-
ground, geometrical “state spaces” and their structures, such as space-
time and its causal structure, “dissolve away,” so that what remains and
is of physical significance, the “physically real” so to speak, is (the al-
gebraic mechanism of) our own actions of observing “it” (Finkelstein,
1996).

105See also (Raptis and Zapatrin, in press).
106That is, at the operationally ideal situation of employment of an infinite power (or energy) to resolve

spacetime into its point events (Cole, 1972). As we explained in section 3, this is theoretically
implausible too due to the fundamental conflict of the principles of Equivalence and Uncertainty
on which gravity and the quantum are founded at energies (i.e., microscopic powers of resolution)
higher thanEP = ht−1

P ≈ 1019GeV—the natural cut-off of quantum gravity.
107Not being “physically real,” so to speak.
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In section 4 we stretched even further this “observer dependent phys-
ical reality” essence of quantum mechanics to an “observation created
physical causality” with the introduction of the “quantum causal potential
relative to our coarse observations” observable which was subsequently
seen to be the dynamically variable entity represented by the finitary
connectionAn on EPn only to find that a (fin)sheaf-theoretic version of
the principle of General Covariance of GR holds in our model, namely,
that dynamics is categorically formulated in terms of equations between
sheaf morphisms thus involving the connectionDn which is the main
finsheaf morphism inEPn (Mallios, 1998a). Hence, our mathematical ex-
pressions of “physical laws” are not observation dependent.108 This points
to the following seemingly paradoxical interpretation of our scheme: the
observer acts as a “law-maker” when she observes109 and as a “law-
seeker” when she communicates her observations.110 There is no conflict,
as Finkelstein convincingly argues in (1996). After all, such an apparently
conflicting “duality” may ultimately prove to be necessary for a genuine
synthesis of the quantum with relativity (Finkelstein, 1996)—a synthe-
sis which appears to be at the heart of the problem of quantum gravity
per se.

(d) Causet theory (Bombelliet al., 1987; Sorkin, 1990a,b) addresses the
problem of “quantum gravity” in locally finite, causal, and to some ex-
tent, quantal terms111 from a nonoperational pseudo-realistic point of view
(Sorkin, 1995). On the other hand, Finkelstein’s Quantum Net Dynamics
(1988, 1989, 1991) and its subsequent generalization, Quantum Relativ-
ity Theory (1996), address the same problem in almost the same terms,
but from an “entirely operational”112 point of view. Our finsheaf-theoretic
model for finitary and causal Lorentzian quantum gravity brings together
Finkelstein’s and Sorkin’s approaches under a “purely algebraic roof” and
to some extent vindicates their fundamental insight that the problem of
quantum gravity may be solved or, at least, be better understood, if it is for-
mulated as the dynamics of an atomistic local quantum causal topology.

108That is to say, physical laws areUn-gauge independent of or “invariant under” (i.e., “covariant
with”) our coarse and dynamically perturbing measurements of the local observables of “spacetime”
(Mallios, 1998a, in press, in preparation).

109By establishing causal connections between the events that she observes.
110That is to say, when she “objectifies” her actions of determination of “it” to other observers by

organizing the coarse causal nexus she has perceived in “it” to structures (sheaves) so that the
dynamicsDn of this local causal nexus (i.e., the dynamical local causal topology) is independent
of her “subjective” coarse measurementsU in Un of “it all.”

111For instance, a quantum dynamics for causets is sought after a covariant path integral or “sum over
causet histories” scenario (Sorkin, 1990a,b).

112In fact, “pragmatic.”
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At least, it certainly goes some way towards vindicating Einstein’s hunch,
that: “Perhaps the success of the Heisenberg method points to a purely
algebraic method of description of nature, that is to the elimination of
continuous functions from physics”(Einstein, 1936), and it accords with
his more general and imperative intuition later on (Einstein, 1956), that:

. . . One can give good reasons why reality cannot at all be represented by
a continuous field. From the quantum phenomena it appears to follow with
certainty that a finite system of finite energy can be completely described
by a finite set of numbers (quantum numbers). This does not seem to be in
accordance with a continuum theory, and must lead to an attempt to find a
purely algebraic theory for the description of reality. But nobody knows how
to obtain the basis of such a theory.
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