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Finitary Spacetime Sheaves of Quantum Causal
Sets: Curving Quantum Causality

A. Mallios* and I. Raptis?3

A locally finite, causal, and quantal substitute for a locally Minkowskian principal
fiber bundleP of modules of Cartan differential forns@ over a bounded regioX of a
curvedC®°-smooth spacetime manifoM with structure grougs that of orthochronous
Lorentz transformations * := SQ(1, 3)', is presentedP is usually regarded as the
kinematical structure of classical Lorentzian gravity when the latter is viewed as a Yang-
Mills type of gauge theory of 8l(2, C)-valued connection 1-formd. The mathematical
structure employed to model this replacemenfofs a principal finitary spacetime
sheafP, of quantum causal se%, with structure grouiis,, which is a finitary version

of the continuous grou@ of local symmetries of General Relativity, and a finitary Lie
algebragy-valued connection 1-formi, on it, which is a section of its subsheaf.

An is physically interpreted as the dynamical field of a locally finite quantum causality,
whereas its associated curvatufg as some sort of “finitary and causal Lorentzian
quantum gravity.”

... Thelocality principle seems to catch something fundamental about natdtaving
learned that the world need not be Euclidean in the large, the next tenable position is that
it must at least be Euclidean in the small, a manifold. The idea of infinitesimal locality
presupposes that the world is a manifold. But the infinities of the manifold (the number
of events per unit volume, for example) give rise to the terrible infinities of classical
field theory and to the weaker but still pestilential ones of quantum field theory. The
manifold postulate freezes local topological degrees of freedom which are numerous
enough to account for all the degrees of freedom we actually observe.

The next bridgehead is a dynamical topology, in which even the local topological
structure is not constant but variabfeThe problem of enumerating all topologies
of infinitely many points is so absurdly unmanageable and unphysical that dynamical
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topology virtually forces us to a more atomistic conception of causality and space-time
than the continuous manifold. (Finkelstein, 1991).

1. INTRODUCTION CUM PHYSICAL MOTIVATION

We are still in need of a cogent quantum theory of gravity. A quantum field-
theoretic scenario for General Relativity (GR) is assailed by nonrenormalizable
infinities coming from the singular values of fields that are assumed to propagate
and interact on a smooth spacetime manifold. Most likely, it is our modeling
of spacetime after £°°-smooth differential manifold that is the culprit for this
unpleasant situation. We can hardly expect Nature to have any infinities, but we
can be almost certain that it is our own theoretical models of Her that are of limited
applicability and validity.

The present paper takes a first step towards arriving at an operationally sound,
locally finite, causal, and quantal model of classical Lorentzian gravity from a
finitary spacetime sheaf (finsheaf)-theoretic point of view. Classical Lorentzian
gravity may be regarded as a Yang-Mills type of gauge theory s C)-
valued connection 1-forma and its kinematics is suitably formulated in a locally
Minkowskian principal fiber bundl@® of modules of Cartan differential forni3
over a bounded regioK of a curvedC>°-smooth differential manifold spacetime
M with continuous structure group that of orthochronous Lorentz transforma-
tionsL* := SQ(1, 3)". A principal finsheafP, of quantum causal sets (qausts
n having as structure group a finitary versi@n of L™, together with a fini-
tary spin-Lorentzian connectioA, which is ags-valued section of the subsheaf
Ql of reticular 1-forms ofP,, is suggested as a locally finite model, of strong
algebralc operational character, of the dynamics of the quantum causal relations
between events and their local causal symmetries in abounded degi@ncurved
smooth spacetime manifoM. In short, we proposeH,, A;) as a finitary, causal,
and quantal replacement of the classical gravitational spacetime struetudg.{

The theoretical modelR,, A;) is supposed to be a preliminary, because kinemat-
ical, step in yet another attempt at viewing the problem of quantum gravity as the
dynamics of a local, finitistic, and quantal version of a variable causality or “causal
topology” (Bombelliet al,, 1987; Finkelstein, 1988, 1989, 1991, 1996; Raptis, in
press, 2001, in preparation; Raptis and Zapatrin, in press; Sorkin, 1990a,b, 1995).

5Since “causal sets” are coined “causets” for short by Sorkin (private communication), “quantum
causal sets” may be similarly nicknamed “gausets.”

6 Our scheme may be coined a “finitary and causal Lorentzian quantum gravity,” although it is perhaps
more precise to think oPnasa finitary, causal, and quantal substitute for the kinematical structure
‘P onwhich GR is cast as a gauge theory, rather than directly of GRpen #e For instance, we will
go as far as to define curvatufg on Pn, but we will not give an explicit expression of the dynami-
cal Einstein equations on it. The latter is postoponed to another paper (Raptis, in preparation-c).

7 See opening quotation above.
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In more detail, the continuous (i.€€?) topology of a bounded regioX of a
spacetime manifold has been successfully approximated by so-called “finitary
topological spaces” which are mathematically modeled after partially ordered sets
(posets) (Sorkin, 1991). The success of such coarse approximations of the topo-
logical spacetime continuum rests on the fact that an inverse system consisting of
finer-and-finer finitary posets possesses, at the maximum (finest) resolution of
into its point events, a limit space that is effectively homeomorphi {&orkin,

1991).

Similarly, coarse approximations of the continuous (&%) spacetime ob-
servables orX have been soundly modeled after so-called “finitary spacetime
sheaves”'—"finsheaves” for short—which are structures consisting of continuous
functions onX that are locally homeomorphic to the finitary posets of Sorkin
(Raptis, 2000a). Here too, an inverse system of such finsheaves was seen to
“converge,” again at maximum refinement and localizationXointo its point
events, taS(X)—the sheaf ofC-spacetime observables dhwhich is generated
by (the germs of) its continuous sections (Raptis, 2000a).

In (Raptis and Zapatrin, 2000), an algebraic quantization procedure of
Sorkin’s finitary poset substitutes for continuous spacetime topology was pre-
sented, first by associating with every such pd3et noncommutative Rota in-
cidence algebr&(P), then by quantally interpreting the latter’'s structure. The
aforementioned limit of a net of such quantal incidence algebras was interpreted as
Bohr’s Correspondence Principle in the sense that the continuous spacetime man-
ifold topology emerges, as a classical structure, from some sort of decoherence of
the underlying discrete and coherently superposing quantum Rota-algebraic topo-
logical substrata (Raptis and Zapatrin, 2000, in press). The operationally prag-
matic significance of the latter, in contradistinction to the ideal and, because of
it, pathological event structure that the classical topological manifold model of
spacetime stands for, was also emphasized by Raptis and Zapatrin.

Furthermore, it has been argued (Raptis and Zapatrin, 2000, in press) that,
in view of the fact that th&2(P)s were seen to be discrete differential manifolds
in the sense of Dimakist al. (1995), not only the continuou®°-topological, but
also the smooth (i.eC>) differential structure of classical spacetime, emerges
at the operationally ideal classical limit of finest resolution of a net of quantal
incidence algebras. Since only at this ideal classical limit of an inverse system of
such reticular quantum topological substrata the local structure of the differential
spacetime manifold emergéghe substrata were conceived as being essentially

8Due to the unphysical infinities in the form of singularities from which the classical and quantum
field theories, which are defined on the operationally ideal and experimentally unrealistic spacetime
continuum, suffer (see opening quotation).

9That is to say, the spacetime point event and the space of covariant directions tangent to it (i.e., its
cotangent space of differential forms).
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alocal structures (Raptis and Zapatrin, 2000), with this “a-locality” signifying
some sort of independence of these algebraic structures from the classical con-
ception of spacetime as a smooth background geometric base space. In a similar
way, the finsheaf-theoretic approach developed in (Raptis, 2000a), with its finitary
algebraic-operational character, strongly emphasizes the physical significance of
such a noncommitment to an inert background geometrical base spacetime mani-
fold, as well as its accordance with the general operational, ultimately “pragmatic”
(Finkelstein, 1996), philosophy of Quantum Theory (QT).

Moreover, at the end of (Raptis, 2000a), it was explicitly mentioned that by as-
suming further algebraic structure for the stalks of the aforementioned finsheaves,
as for instance by considering sheaves of incidence algebras over Sorkin’s finitary
topological posets, at the limit of maximum resolution or “fine-graining” of a net
of such finsheaves of Rota algebras, which can also be regarded as Bohr’s classi-
cal limit & la Raptis and Zapatrin (2000), the differential triag, Q := @; Q',d)
should emerge. The latter stands for the sheaf of modules of Cartan differen-
tial forms Q on the smoothX, equipped with the nilpotent &iler-Cartan dif-
ferential operatod which effects (sub)sheaf morphisms of the following sort
d: (X, Q) — (X, Q1) (Mallios, 1998a). Thus, a finsheaf of Rota incidence
algebras is expected to be a sound model of locally finite, as well as quantal,
“approximations” of the smooth spacetime observables—the classical spacetime
dynamical fields?

Parenthetically, and with an eye towards the physical interpretation to be given
subsequently to our mathematical model, we should mention that the inverted com-
mas over the word “approximations” in the last sentence may be explained as fol-
lows: after the successful algebraic quantization of Sorkin’s discretized spacetimes
in (Raptis and Zapatrin, 2000), it has become clear that the resulting alocal quan-
tum topological incidence algebr&X P) associated with the finitary topological
posets in (Sorkin, 1991) should not be thought of as approximations proper of the
classical smooth differential forms like their correspondiPgor the finsheaves
S, in (Raptis, 2000a) actually approximate B&-topological manifold structure
of classical spacetime, as if a geometric spacetime exists as a background base
space “out there.” Rather, they should be regarded as operationally pragmatic and
relatively autonomous quantum spacetime structures an inverse system of which
possesses an operationally ideal (i.e., unobservable in actual experiments) and
classical, inthe sense of Bohr, limit structure isomorphic to the differential manifold

10We tacitly assume that the classical model for the kinematics of spacetime and the fields inhabiting,
dynamically propagating and interacting on it is that of a 4-dimensional differenti@Ptesmooth)
manifold M, with fiber space2" of smooth Cartan exterior-forms attached at or soldered on its
point events. Physical fields are then modeled after cross-sections of this Cartan fiber/ofhdle
smooth exterior forms (Baez and Muniain, 199410&éler and Salcker, 1990; Von Westenholz,
1981).
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model of spacetime (Raptis and Zapatrin, 2000, in press). From this viewpoint,
the quantum topological incidence algebf&) (and their gauset relatives in
(Raptis, 2000b)) are regarded as being physically fundamental (primary) and their
correspondence limit geometric point set manifold structure as being derivative
(secondary), ultimately, their emergent classical correspondent or infinite localiza-
tion energy limit space (Cole, 1972). Properly conceived, it is the classical theory
(model) that should be thought of as an approximation of the deeper quantum
theory (model), not the other way around (Finkelstein, 1996). Thus, “quantum
replacements” or “quantum substitutes” instead of “approximations” will be used
more often from now on to describe our finsheaves (of qausets), although it is fair
to say that such combinatorial structures were initially conceived as approxima-
tions proper of the&C®-spacetime topology in (Raptis, 2000a), as it was originally
motivated by Sorkin (1991).

In toto, this nonacceptance of ours of spacetime as a dynamically inactive
smooth geometric receptacle of the physical fields or as a background stage that
supports their dynamical propagation, that is passively existing as a static state
space “out there” and whose structure is fieggriori and forever by the theorist
independently of our experimental actions on or operations of observation of “it,”
is the essence of the operationally sound quantum physical semantics that we will
give to our algebraic finsheaf model in the present paper.

In GR—the classical theory of gravity which is based on the kinematical-
structural assumption that spacetime is a 4-dimensional pseudo-Riemannian man-
ifold M—the main dynamical variable is the smooth Lorentzian spacetime metric
0,» Which is physically interpreted as the gravitational potential. The local relativ-
ity group of GR, in its original formulation in terms of the Lorentzian megji¢,
is the orthochronous Lorentz grolig := SQ(1, 3)'. GR may also be formulated
in terms of differential forms on the locally Minkowskian bundke(Gockeler
and Schicker, 1990}! Equivalently, in its gauge-theoretic spinorial formulation
(Baez and Muniain, 1994 Bergmann, 195%) gravity may be conceived as a type
of gauge theory of al(2, C)-valued 1-form.A—the spin-Lorentzian connection
field, which represents the gravitational gauge potential. A sound model for the

115ee chapter on the Einstein-Cartan theory. Wee4the Cartan principal fiber bundle with structure
group the orthochronous Lorentz group of local invariances of GR.”

12\\e refer to Ashtekar’s modfication of the Palatini formulation of GR by using new spin variables
(Ashtekar, 1986). In this theory, only the self-dual pdrt of a spin-Lorentzian connectiad is
regarded as being physically significant. In (Raptis, in press) this is used as an example to argue
that the fundamental qguantum time asymmetry expectedhef ttue quantum gravity(Penrose,

1987) is already built into the kinematical structure of a locally finite, causal, and quantal version
of that theory modeled after curved finsheaves or schemes (Hartshorne, 1983; Shafarevich, 1994)
of qausets.

131N this theory,g,., is replaced by a field of four 2 Pauli spin-matrices.
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kinematics of this theory is a principal fiber bundRover (the regionX of)
the C*°-smooth spacetime manifold, with structure grous = SL(2, C)** and
a nonflat connection 1-forml taking values in the Lie algebmg= sl(2, C) of
G5, totally, (X, P, G, A).*® Thus, by the discussion in the penultimate paragraph,
it follows that a principal finsheaf of quantum incidence algebras, together with
a nonflat connection taking values in their local symmetries, may be employed
to model a locally finite and quantal version of Lorentzian gravity in its gauge-
theoretic formulation on a smooth spacetime manifold.

However, there seem to laepriori two serious problems with such a model.
On the one hand, only Riemannian (i.e., positive definite) metric connections may
be “naturally” defined on discrete differential manifolds such as our Rota incidence
algebras (Dimakis and Mlér-Hoissen, 1999), and on the other, the anticipated
classical limit sheaf or fiber bundl&( €2, d) is flat (Mallios, 1998a}’ The first
comes into conflict with the indefinite character of the local spacetime metric
of GR® thus also with its local relativity grodf) whereas the second, with the
generalrelativistic conception of the gravitational field strength as the nonvanishing
curvature of spacetime.

One should not be discouraged, for there seems to be a way out of this double
impasse which essentially motivated us to consider finsheaves of gausets in the
first place. First, to deal with the “signature problem,” we must change physical

14 A principal fiber bundle with structure group may also be called a3-bundle” for short.

153ince locally in the group fiber (i.e., Lie algebra-wise in the fiber space) @dthendleP sl(2, C)
is isomorphic to the Lie algebrét™ = so(1, 3)' of the orthochronous Lorentz groupt, P may
equivalently be thought of as having the latter as structure g@upue to this local isomor-
phismA is given the epithet “spin-Lorentzian” and the same synida used above for both the
Cartan (Lorentzian) and the Bergmann (spBipundles. ThuspP is called “the CartanBergmann
G-bundle.”

16The name “principal” is usually reserved only for the grasybundle or sheaf, whereas the vector
or algebra sheaf that carries it, in our casds called “associated” (Mallios, 1998a). Here we use
one symbol;P, and one name, “principal,” for both th®-sheaf of orthochronous Lorentz trans-
formationsL™* and its associated locally Minkowskian sheaf of differential fosm<Conversely,
in section 4 we first defin& as an algebra sheaf and then we coin @sheaf of its Lorentz
symmetries “adjoint.” There should be no misunderstandihig: associated witks, or vice versa
G is adjoint to2, and together they constitute the principal sieaNevertheless, we apologize to
the mathematical purist for this slight change in nomenclature.

17Dimakis and Miller-Hoissen (1999) also mention the fact that the (torsionless) Riemannian metric
connectioriv of the universal differential calculus on a discrete differential manifold is flat in that it
reduces to the nilpotentatiler-Cartan differential whose curvatur® is zero, sincéR := V2 =
d?=o.

181n GR, the local metric field),, is Lorentzian (of signature 2), not Euclidean (of trace 4).

19The group of local isometries of GR, at least in its spinorial gauge-theoretic formulation men-
tioned above, is taken to b8L(2, C)—the double cover of the orthochronous Lorentz group
L* =sSql, 3)' of local invariances 0§, that also locally preserve the orientation of time, not
the 4-dimensional unimodular Euclidean rotationS@4). In this sense GR is a theory of (locally)
Lorentzian gravity.
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interpretation for the algebraic structure of the stalks of the aforementioned fin-
sheaf of quantal incidence algebras from “topological” to “causal.” This means that
we should consider finsheaves of the qausets in (Raptis, 2000b), rather than fin-
sheaves of the quantum discretized spacetime topologies in (Raptis and Zapatrin,
2000). Indeed, Sorkin (1995), in the context of constructing a plausible theoreti-
cal model for quantum gravity, convincingly argues for a physical interpretation
of finitary posets as locally finite causets (Bombetlal., 1987; Sorkin, 1990a,b)

and against their interpretation as finite topological spaces or simplicial complexes
(Alexandrov, 1956a,b, 1961; Raptis and Zapatrin, 2000). Similar arguments against
a nonrelativistic, spatial conception of topology and for a temporal or causal one
which is also algebraically modeled with a quantum interpretation given to this
algebraic structure, like the quantum causal topology of the gausets in (Raptis,
2000b), are presented in (Finkelstein, 1988). Ancestors of the causet idea are the
classic works of Robb (1914), Alexandrov (1956a,b, 1967), and Zeeman (1964,
1967) which show that the topology and conformal geometry of Minkowski space
M, as well as its relativity group™ of global orthochronous Lorentz transforma-
tions modulo spacetime volume-preserving maps, can be determined by modeling
the causal relation between its events after a partial order. Similarly in spirit,
the derivation of the entire geometry of the Lorentzian spacetime manifold—the
kinematical structure of GR—(i.e., its topology, dimensionality, differential and
indefinite-Lorentzian metric structure) lies at the heart of the causet approach to
guantum gravity propounded in (Bombaedtial., 1987; Bombelliand Meyer, 1989;
Sorkin, 1990a,b, 1995).

Onthe other hand, causality as a partial order, although it solves the “signature
problem,” is unable to adequately address the second “curvature problem” men-
tioned above, since it determines, up to a conformal (i.e., volume) factor, the
Minkowski spaceM of Special Relativity (SR) and its Lorentz symmetries, which
is flat and its Lorentz isometries are global. Our way out of this second “curvature
impasse” involves a rather straightforward localization or gauging of the qausets
in (Raptis, 2000b), by considering a nonflat connectinon a finsheaf of such
guantally and causally interpreted incidence algebras, thus by emulating the work
of Mallios (1998a,b, in press, in preparati#hthat studies Yang-Mills guage con-
nections orG-sheaves of vector spaces and algebras in general. This gauging of
guantum causality translates in a finitary and quantal setting the fact that the clas-
sical theory of gravity, GR, may be regarded as SR localized or being géuged.
This connection variable is supposed to represent the dynamics of an atomistic
local quantum causality as the latter is algebraically encoded stalk-wise in the
finsheaf (i.e., in the qausets that dwell in these stalks). The result may be regarded

20 Albeit, in a finitary causal and quantal context.
2150 that the spacetime metric, or its associated (i.e., metric) connection, become dynamical field
variables (Torretti, 1981) and are not fixed “trivial” constant entities throughout spacetime.
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as the first essential step towards formulating a finitary dynamical scenario for the
gauset stalks of the sheaf which, in turn, may be physically interpreted as a finitary
and causal model of the still incompletely or not even well formulated theory of
Lorentzian quantum gravity.

Equivalently, and in view of the sound operational interpretation given to
the topological incidence algebras in (Raptis and Zapatrin, 2000) as well as to
the topological finsheaves in (Raptis, 2000a), our model may be physically inter-
preted as locally finite and quantal replacements of the dynamics of the local causal
relations between events and their local causal symmetiies. limited (i.e., fi-
nite or bounded), by our own domain of experimental activity (i.e., laboratory)
(Raptis and Zapatrin, 2000), regiofiof the smooth spacetime manifoM. As
we mentioned above, the latter “exists” only as a “surrogate background space”
that helps one remember where the discreteness of our model comes from, but it
is not essential to the physical problem in focus. Again, the spacetime continuum,
as a “base space,” is only a geometrical scaffolding that supports our stru€tures,
but that should also be discarded after their essentially alocal-algebraic, quantal-
operational and causal (i.e., nonspatial, but temporal) nature is explicated and used
for our problem in focus. Then, the aforementioned correspondence principle for
quantal topological incidence algebras may be used on (an inverse system of)
the principal finsheaves of qausets and their nonflat spin-Lorentzian connections
in order to recover the classical spacetime structure on which GR is formulated,
as the classical theory of gravity, at the classical and operationally ideal limit
of infinite energy of resolution (Cole, 1972) (i.e., of infinite power of localiza-
tion) of spacetime into its point events. This classical kinematical limit spacetime
model for GR, as a gauge theory, is the one mentioned above, namely, a principal
fiber bundle” of modules of smooth Cartan differential forrx over (a re-
gion X of) aC*-smooth Lorentzian spacetime manifdit] with structure group
G = SI(2,C) or its locally isomorphicSQ(1, 3)', and a nonflasl(2, C)-valued
gravitational gauge connection 1-forshon it which is a cross-section of itg!
sub-bundle.

The present paper is organized as follows: in the next section we propose
and discuss in some detail finitary versions of the principles of Equivalence and
Locality of GR, as well as of their “corollaries,” the principles of Local Rela-
tivity and Local Superposition, that are expected to be “operative” at the locally
finite setting that we place our first step at modeling “finitary and causal Lorentzian
quantum gravity” after “curving quantum causality by gauging a principal finsheaf

22That is to say, the dynamics of local quantum causality or “local quantum causal topology” and its
symmetries.

23|n the sense that “it avails itself to us as a topological space” by providing sufficient (but not nec-
essary!) conditions for the definition of,, which is the main dynamical variable in our theoretical
scheme. See section 5.
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of gausets?* In section 3 we review the algebraic model of flat quantum causality
proposed in (Raptis, 2000b), namely, the gauset, and pronounce its characteristics
to be subsequently localized or gauged. In section 4 we recall the topological fin-
sheaves from (Raptis, 2000a), then we define finsheaves of gausets and their local
causal symmetries. At the end of the section, a sound operational interpretation
of finsheaves of gausets and their symmetries is given briefly, so that our theory
is shown to have a strong philosophical support as well. In section 5 we suggest
that for localizing or gauging and, as a result, curving quantum causality, a prin-
cipal finsheaf of qausets having as structure group a finitary versis@df, 3)",
together with a discrete and local sort of a nonflat, spin-Lorentzian connection
Ap on it, is an operationally sound moded;, is then physically interpreted as a
finitary, local, causal and quantal topological variable whose nonzero curvature
stands for a finitary, causal, and quantal model of Lorentzian gravity. We conclude
the paper by discussing the soundness of this finsheaf model of finitary and causal
Lorentzian quantum gravity, as well as some physico-mathematical issues that
derive from it.

2. PHYSICAL PRINCIPLES FOR FINITARY
LORENTZIAN QUANTUM GRAVITY

In this section we commence our endeavor to model connection and its associ-
ated curvature in a curved finitary quantum causal setting by establishing heuristic
physical principles that must be encoded in the very structure of our mathematical
modef® on which the dynamics of a locally finite quantum causality is going to
be founded in section 5. The four physical principles to be suggested below will
be seen to be the finitary and (quantum) causal analogues of the ones of Equiv-
alence, Locality, as well as their “corollary” principles of Local Relativity and
Local Superposition respectively, of GR which is formulated as a gauge theory in
the principal bundléP over a differential manifold spacetind. We have chosen
these principles from the classical theory of gravity, because they show precisely
in what way the latter is a type of gauge theory, and also because they will prepare
the reader for our localization or gauging and concomitant curving of gqausets in
section 5.

The first physical principle from GR that we would like to adopt in our
inherently granular scenario, so that curvature may be easily implemented and
straightforwardly interpreted as gravity in such a finitary quantum causal context,

24 As we said, the word “gauging” pertains to the aforementioned implementation of a nonflat gauge
connection4, on the finsheaf in focus.

25The “principal finsheaf of gausets with a nonflat finitary spin-Lorentzian connection on it,” to be
built progressively in the next three sections.
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is that of equivalence (EP). We borrow from GR the following intuitively clear
version of the EP:

Classical Equivalence Principle (CEPYhe curved spacetime of GR is locally
Minkowskian; thence flat. That is to say, the space tangent to every spacetime
event is isomorphic to flat Minkowski spadef. As we mentioned in the intro-
duction, in this sense GR may be thought of as SR made local or been point-
wise (i.e., event-wise) gauged M. Expressed thus the CEP effectively encodes
Einstein’s fundamental insight that locally the gravitational figjd can be
“gauged away” or be reduced to the constant and flat Minkowski mefric=
diag(—1, +1,+1,+1) of SRS by passing to a locally inertial frame (Torretti,
1981).

What is important to emphasize in this formulation of the CEP is that in GR
M assumes a local kinematical role in the sense that an isomorphic copy of it is
erected, as some kind of fiber space, over each and every event of the differential
manifold spacetim®, so that every individual fiber is physically interpreted as an
independent (of the othev!-fibers) vertical world of spacetime possibilities along
which the dynamically variable field of locality,, can be reduced to the constant
nu- It follows that the symmetries of gravity are the isometries\éflocalized;
hence, one arrives at a gauged or localized version of the (orthochronous) Lorentz
group as the invariances of GR. This motivates us to formulate the Classical Local
Relativity Principle (CLRP) which, in a sense, is the local dynamical symmetry
corollary of the CEP above:

Classical Local Relativity Principle (CLRP)The group of local (gauge) invari-
ances of GR is isomorphic to the orthochronous Lorentz gtoup- SQ(1, 3)! of
symmetries of the Minkowski spacet of SR.

To summarize, the curved spacetime of GR may be modeled after the locally
Minkowskian tangent vector bundleM := Uycxcm Mx—which is a sub-bundle
of the dual of theG-bundle” which has as continuous structure gro@p=
SQ1, 3)'—together with a nonflat Lie algeb= sq(1, 3)' ~ sl(2, C)-valued
spin-LorentziarR!-sectionA.

Since, as it was mentioned in the introduction, causets effectively encode the
entire geometry of flat Minkowski spacet, they can be thought of as local kine-
matical structures representing the possible local causal relations in an otherwise
curved spacetime of events. The CEP, modified to fit a finitary, causal, and curved
situation like ours, reads.

26Sincen,w(x) delimits the Minkowski lightcone atfor everyx € M, which, inturn, defines the local
causal relations between events in the Minkowski space tangenitte gravitational potentia,,,
may be alternatively interpreted as “the dynamical field of local causality"—local causality being
commonly known as “locality.” Thus GR may be viewed as “the classical dynamical theory of
locality.”
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Finitary Equivalence Principle (FEP)A finitary curved causal space is locally

a causet. Presumably, and on discrete locality grounds, it is the transitivity of
causality as a partial order that must be renounced due to gravity (Finkelstein,
1988; Raptis, 1998, 2000b, in preparation-a).

In other words, a curved smooth spacetime, as a causal space, is not glob-
ally transitive; it is only locally and kinematically $6.Thus, the CEP may be
restated as a correspondence or reduction principle: as the dynamically variable
gravitational potentiab,, reduces locally to the constan, in GR, causality
becomes localR? the constant transitive partial order.° Equivalently, a curved
finitary causal space, one having a causal relation not fixed to a globally transitive
partial order, but with a dynamically variable local causality between its events,
is only locally reducible to a transitive, flat “inertial causet.” Thus,/asmay
be thought of as vertically extending, as an independent kinematical fiber space,
over every event of the curved smooth spacetime manifold of GR, so an inde-
pendent causet space may be thought of as being raised over every point event
of a curved finitary causal space. Hence, the FEP almost mandates that a curved
finitary causal space be modeled after a finsheaf (or a bundle) of causets (over a
finitary spacetime)—with each independent causet being localized, so to speak,
over the events of the finitary base space. As a matter of fact, and also due to
the finitary principle of Locality that we will formulate shortly, we will see that a
curved finitary causal space should be modeled after a finsheaf of gausets (not of
transitive causets) for discrete locality’s sake. Thus, some kind of “quantumness”
will inevitably be infusedab initio into our model of the dynamics of finitary
causality?' Before we give the Finitary Locality Principle and its “corollary,”
the Finitary Local Superposition Principle, we give the finitary analogue of the
CLRP.

Finitary Local Relativity Principle (FLRP) The local invariance structure of a
curved finitary causal space is a finitary versiorLcf.

In a causal context, the work of Zeeman (1964, 1967) has shown that the
symmetry structuré * of the flat Minkowski continuun\1, regarded as a causal
space with a causality relation between its events modeled after a (globally) in-
ertial partial order— which, in turn, derives frora\’s n,,,, is isomorphic to the

27 ocality pending definition in our finitary context.

28That is to say, it is flat only in the “vertical” direction along each of the Minkowskian fibers of the
curved covector bundi®.

29As it was mentioned earlier, locality pending definition in our finitary scenario (see the principle of
Finitary Locality below).

30Wwith the CEP in mind, we may call” “the inertial Minkowskian causality.” In a curved causal
space causality can only locally be the inertial partial orde(CEP).

31This infusion converts our scheme to a model of the dynamics of finifaantumcausality. See
our formulation of the Finitary Local Superposition Principle below.
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groupG of causal automorphisms @1.32 In our case, and in view of the FEP, we
infer that a finitary version of *, which we callG,,, comprises the local relativity
structure group of a curved finitary causal sp&cHow, due to the local isomor-
phism mentioned in the introduction between the Lie algebtas so(1, 3)' and

sl(2, C) in the smootlG-bundleP, we may alternatively say th&, is the finitary
version of the local relativity grougL(2, C) of GR in its spinorial gauge-theoretic
formulation (Ashtekar, 1986; Baez and Muniain, 1994; Bergmann, 1957). A sim-
ilar local relativity group for a curved finitary quantum causal space was proposed
in (Finkelstein, 1988} whereas Selesnick (1994, 1998) found tB&f2, C) is

the result of a condensation of a quantum version of the classical binary alterna-
tive 2—the permutation local relativity group of Finkelstein’s reticular and curved
quantum causal net.

In all the principles and remarks above, we mentioned the word “local” with-
out having transcribed the notion of classical locality to a curved finitary causal
scenario like ours. We do this now. The Classical Locality Principle (CLP) in GR
may be wrapped up into the following assumption.

Classical Locality Principle (CLR) The spacetime of GR is modeled after a dif-
ferential (i.e.,C>°-smooth) manifoldV (Einstein, 1924§>

Since a locally finite causal model like ours does not involve (by definition)
a continuous infinity of differentially (i.e., smoothly) separated events likevthe
above, the CLP ot may be translated in reticular causal terms to the following
requirement.

Definition of Finitary Locality (DFL) In a causet, locality pertains to physical
properties, to be interpreted as observables or dynamical physical variables, with
“effective range of action or dynamical variation” restricted to empty Alexandrov

32Since the Alexandrov causal topology/bt is defined by— (Alexandrov, 1956a,b, 1967), it follows
thatG is the group of causal homeomorphismshdf (Torretti, 1981).

33Then,Gp, consists of the local causal homeomorphisms of the dynamically variable (and quantal)
local causal topology of a curved finitary causal space. Since we plan to model the latter after a
finsheaf of qausets whose local structure is (by definition) the gauset stalks over this curved finitary
causal base spad®; may be equivalently thought of as consisting of the group of homomorphisms
(or automorphisms) of the quantal and causal incidence algebras respresenting these qauset stalks
(Raptis, 2000b). (See also remarks at the end of this section on the significance of our choice to
model the dynamics of a finitary quantum causality by a finsheaf of quasets.)

34\\e refer to the locaBLy invariances of the dyadic cell of the net there.

35Thus, the CLP may be viewed as the requirement that all the dynamical laws of physics must be
differential equations, or more intuitively, that local dynamical actions connect (influence) infinites-
imally or “differentially” separated events living in the tangent space at each event of the smooth
spacetime continuum. It follows that the CLP requires physical observables or dynamical variables
to be modeled after (sections of) smooth differential form$jnas mentioned in the introduction.
Thus, by “the local structure of the curved spacetime manikdldve mean “an evenk and the
space of directions tangent to it” (Raptis and Zapatrin, 2000). In the bdndhes pertains to its,
Minkowskian by the CEP, fibers over each and every exesftits base spacetime manifoM.



Finitary Spacetime Sheaves of Quantum Causal Sets 1897

sets3¥® Hence, we shall demand that the following physical principle be obeyed by
our model of a curved finitary causal space.

Finitary Locality Principle (FLP) Dynamical relations on a causeX,(—) in-
volve only finitary local observablés.

Some scholia on DFL and FLP are due here. Since in our reticular scheme
we can assume no dynamical properties varying between infinitesimally (i.e.,
smoothly) separated events—as if an ether-like spacetime continuum serves as
an inert connection medium between them—we may as well define local physi-
cal observables as the entities that vary between nearest neighboring events called
“contiguous” from now or$¥é The FLP can be alternatively coined “the principle of
contiguity in a finitary causal space” and it is the reticular analogue of the CLP of
GR, which, inturn, as it was posited above, may be summarized to the assumption
of a 4-dimensional differential manifold model for spacetime (Einstein, 1524).
Also, by the FEP above, we expect that in a curved finitary causal space grav-
ity “cuts-off” the transitivity of inertial causality and restricts the latter to empty
Alexandrov causal neighborhoods of contiguous events.

At this point it must be mentioned that the FLP, apart from seeming rather
natural to assume, was somewhat “forced” on us by discrete topological and local
guantum causal considerations. In more detail, it has been recently shown (Breslav
et al, 1999) that the generating relatipnof the Rota topology of the incidence
algebraQ associated with a poset finitary substititef a continuous spacetime
manifold as in (Sorkin, 1991) is the same as the one generating the finite poset
topology of P if and only if one considers points in the Hasse diagram of the latter
thatare immediately connected by the partial order{i.e., “contiguous events”).

36See (Bombelliet al,, 1987; Raptis, 2000b; Sorkin, 1990a,b, 1995) and the next footnote for a
definition of these.

37Thus, only dynamical changes of observables between “nearest neighboring events” defining
null Alexandrov sets inX (i.e., “p,ge X:(p— qQ)A(Zr : p—r — @),” or in terms of the
Alexandrov interval bounded by andq, A(p, ) :={r : p—r — q} = ) are regarded as being
physically significant. This principle is an explication of the definition of nonmediated (immediate)
physical dynamical actions in the DFL above. Thus, by the DFL we anticipate the gravitational
connectionA in its finitary and causal versiad,,, which is supposed to be the main gravitational
dynamical variable in our granular scheme, to be defined (as varying) on such immediate causal
arrows. See section 5 for more on this.

38|n the last footnotep andq in the causetX, —) are contiguous.

39parenthetically, we mention that in this paper Einstein concludes that the smooth geometrical
manifold model for spacetime, which is postulated up-front in GR for classical locality’s sake, may
be thought of as an inert and absolute ether-like background structure on which the whole theory of
GR and the mathematical language that supports it, classical Differential Geometry, is erected. In
view of his characteristic dissatisfaction with any theory that employs structures that are absolute
and nondynamical, ultimately, “unobservable substances,” and in view of the reticular, molecular
picture of Nature that the quantum revolution brought about, we infer that Einstein could not have
been content with the smooth manifold model for spacetime. Indeed, we find that this was the case
(Einstein, 1936, 1956)—see quotations concluding the paper.
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Then, if one interprets—"in the finitary poset causally instead of topologically as

in (Raptis, 2000b; Sorkin, 1995), and gives a cogent quantum interpretation to the
structure of the causal Rota algebra associated with it as in (Raptis, 2000b; Raptis
and Zapatrin, 2000), one is led to infer that the physically significant, because local,
causal connections between events in a qauset are the contiguous, immediate ones;
hence the FLP above. This was first anticipated by Finkelstein (1988). The FLP
promotes this conjecture to a physical “axiom” or principle concerning the finitary
dynamics of local (quantum) causality in a curved locally finite (quantum) causal
space in the same way that in the differential manifold spacetinoé GR locality

was “forced” on Einstein byM’s own smoothness.

According to the finitary principles formulated above, we may say that in the
same way that the CEP foreshadows a nontrivial connegtjofand its associated
curvaturef,) in the smooth continuum—the main local dynamical variable of
GR as a gauge theory iR, so FLP, by “cutting-off” the transitivity property
of “— " furnishes us with the crucial idea of how to model the dynamics of a
contiguous (local) quantum causality in a curved finitary causal space, namely,
one must define a nontrivial finitary connection (and its associated curvature) on a
finsheaf of gausets over it. This connection, in turn, like its smooth spin-Lorentzian
counterpartd onP overM respects local relativistic causalffyshould somehow
respect the local quantum causal connections in the qausetfildéis highlights
and anticipates two very important aspects of the present paper:

(a) Thefinitary connectiorl, (and its associated curvature) derives from the
local algebraic structure of the finsheaf of qaugefshus, our scheme
allows for a purely algebraic and local definition of connection (and
its associated curvature) without reference to a background geometric
base spacé which will only serve as a surrogate host.4f and which
will have to be discarded, or at least be regarded as being physically
insignificant, at the quantal level, only to be recovered as a fixed inert
(nondynamical) geometrical structure at the classical limit of an inverse
system of curved finsheaves of qausets.

40Since it preserves the Minkowski lightcone soldered (with origin) at each point-g\@ivl—the
Minkowski lightcone in each fiber spacdety of P.

“1That is to say, it should respect the generating or “germ” relafiar the Rota quantum causal
topology of the gauset stalk of the finsheaf in focus. We defiiethe next section and germs of
(continuous sections of) finsheaves of qausets in section 4.

42That is to say, from the algebraic structure of the quantal and causal incidence algebra stalks of the
finsheaf in focus.

43This is in glaring contrast to the situation in the curved geometrical point set manifadi GR
where connection is intimately associated with a parallel transporter (of smooth tensor fields) along
smooth finite spacetime curves, whereas its associated cunAtuneasures the anholonomy
of such parallel transports around smooth finite spacetime loopskgr and Salcker, 1990).
Certainly, both are nonlocal geometric conceptionglaind itsF.
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(b) Asheaf(and anontrivial connection onit) is the “right” (i.e., the appropri-
ate and natural) mathematical structure for modeling the dynamics (i.e.,
the curving) of local quantum causality, since, by definition, a sheaf is
a local homeomorphism (Bredon, 1967; Mallios, 1998a; Raptis, 2000a),
so that &G -finsheaf of qausets by definition respects the reticular local
guantum causal topology of the gauset stalks, while a nomgflaalued
connectionA, on it effectively encodes the “local twisting” (curving)
of these stalks relative to each other, thus it represents the dynamics of
a locally finite quantum causality. We will return to these issues more
analytically in the next three sections.

We close this section by giving the analogue of the kinematical Coherent
Local Superposition Principle in (Finkelstein, 1988, 1991) for our finsheaves of
gausets.

Finitary Local Superposition Principle (FLSPGtalk-wise in a finsheaf of gausets
the latter superpose coherently. It follows from the FLRP thagthealued con-
nection A, preserves this “stalk-wise quantum coherence or local superposition
of qausets*

Inthe next section we present an algebraic approach to flat (i.e., nondynamical
or ungauged) reticular local quantum causality, whereas in sections 4 and 5 we
motivate the finsheaf-theoretic point of view and we study a gauged, thus curved,
principal finsheaf of gausets, respectively.

3. FINITARY SUBSTITUTES AND THEIR
FLAT QUANTUM CAUSAL RELATIVES

In this section we motivate the modeling of qausets after incidence algebras
a la Raptis (2000b), so as to prepare the reader for our representing the stalks of
a finsheaf of gausets over some curved finitary causal space as such Rota algebras
in section 5. The relevance of gqauset theory to the problem of discrete Lorentzian
guantum gravity is also discussed. In particular, we approach the issue of “discrete
locality” or “finitary local causality” via qausets. We quote the main result from

44This is so sinced, takes values in the reticular (and quantal) algefyaf Rota algebra ho-
momorphisms which, in turn, by the functorial equivalence between the category of finitary
posets/poset morphisms (or its corresponding category of locally finite causets/causal morphisms)
and the category of incidence Rota algebras/Rota homomorphisms (or its corresponding category
of gqausets/qauset homomorphisms) (Raptis and Zapatrin, 2000, in press; Stanley, 1986; Zapatrin,
in press), it may be regarded as the reticular and quantal version of Zeeman'’s (1964) Lie algebra
¢+ of orthochronous Lorentz transformations (i.e., the infinitesimal causal automorphisms) of the
Minkowski continuumM regarded as a flat inertial poset causal space. We will return to this remark
in sections 4—6, but the upshot is that as a linear operator-valuedAnapill preserve the local
linear structure stalk-wise, hence, the local quantum coherence or quantum interference of gausets
dwelling in these stalks.
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(Raptis, 2000b) that gausets are sound models of a local and quantal version of the
causets of (Bombelgt al., 1987; Sorkin, 1990a,b, 1995) and use it as a theoretical
basis to implement the FLP of the previous section, as well as to introduce the cen-
tral physical idea for curving local quantum causality in section 5 by localizing or
gauging a finsheaf of qausets (section 4), thus also realize the FEP of the previous
section.

The topological discretization of continuous spacetime (Sorkin, 1991) has as
its main aim the substitution of a continuum of events by some finitary, but topo-
logically equivalent, structure. The latter is seen to Big poset. Such a finitary
substitute for the continuous spacetime may be viewed as an approximation of its
continuous counterpart, but one of physical significance, since it seems both theo-
retically and experimentally lame to assume a continuum as a sound model of what
we actually experience (i.e., record in the laboratory) as “spacetime” (Raptis and
Zapatrin, 2000). The theoretical weakness of such an assumption is the continuous
infinity of events that one is in principle able to pack into a finite spacetime vol-
ume resulting in the unphysical infinities that plague classical and quantum field
theory. The experimental weakness of the continuous model of spacetime is that
it undermines the operational significance of our actual spacetime experiments,
namely, the fact that we record a finite number of events during experimental op-
erations of finite duration in laboratories of finite size; altogether, in experiments
of finite spatiotemporal extent (Raptis and Zapatrin, 2000). Also, from a realistic
or pragmatic point of view, our localizations (i.e., determinations of the loci) of
events are coarse or “approximate” and inflict uncontrollable perturbations to the
structure of spacetinté, thus our rough, because dynamically perturbing, mea-
surements of events may as well be represented by open sets or “regions” about
them (Breslawet al., 1999; Butterfield and Isham, 2000; Raptis, 2000a; Raptis and
Zapatrin, 2000, in press; Sorkin, 1991, 1995).

Of course, the discrete character of such finitary approximations of a contin-
uous spacetime ties well with the reticular and finite characteristics that a cogent
quantal description of spacetime structure ought to have. Thus, if anything, topo-
logical discretizations should prove useful in modeling the structure and dynamics
of spacetime at quantum scales (Raptis and Zapatrin, 2000, in press). It must be
stressed however that such a contribution to our quest for a sound quantum theory
of gravity is not mandatory from the point of view of GR—the classical theory of
gravity, since in the latter the topology of spacetime is fixed to that of a locally
Euclidean manifold, while only the Lorentzian metric on it is assumed to be a
dynamically variable entity. Effectively,, is the sole “observable” in GR. How-
ever, it seems rathad hocand unreasonably short sighted in view of the persisting
and pestilential problem of the quantum localization of spacetime events to assume

45Even more so in our scenario where spacetime itself is assumed to be fundamentally a quantum
system (Raptis and Zapatrin, 2000, in press).
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that only the metric, but not the topological structure of the world, is subject to
(quantum) dynamical fluctuations and variations. Such a theory of “spacetime
foam,” that is to say, of a dynamically fluctuating and in principle observable
guantum spacetime topology, has been aired for quite some time now (Wheeler,
1964), and itis akin in spirit to the topological discretizations developed in (Sorkin,
1991), as well as to their quantal relatives in (Raptis and Zapatrin, 200%).
attempt at an entirely algebraic description of quantum spacetime foam, akin to
the finsheaf localizations of qausets to be worked out here, was recently proposed
in (Raptis and Zapatrin, in press).

On the other hand, in view of the unphysical, nondynamical, nonrelativistic,
space-like nature of the constant, 2-way, spatial connections between events that
define the fixed locally Euclidean topology of the classical spacetime continuum
M, there is an important affinity between our quest for a dynamical theory of local
guantum causal topology and the problem of constructing a reasonable quantum
theory of gravity. To understand this close relationship, we must change focus of
enquiry from a theory of spatial Euclidean connections between geometric points
to a more physical, because relativistic, temporal or causal spacetime topology
between events as the quotation opening this paper suggests and as strongly advo-
cated in (Finkelstein, 1988).

As it was mentioned in the previous section, in GR the gravitational potential,
which is identified with the metrig,,, of spacetime, may also be thought of as en-
coding complete information about the local causal relations between events. Thus,
GR may also be interpreted as the classical dynamics theory of locality. It follows
that a quantum theoresis of the dynamics of causal connections between spacetime
events may lead to, if not just give us invaluable clues about, a classically conceived
guantum theory of gravity—the quantization of the gravitational fgglg(x) of
GR. In short, there probably is a way from a dynamical theory of local quantum
causality to the graviton, but not the other way around (Bombektil., 1987). A
full fledged noncommutative topology for curved (i.e., dynamical) local quantum
causality is rigorously formulated in the scheme-theoretic language of modern al-
gebraic geometry and its categorical outgrowth, topos theory, in (Raptis, in press).

However, it must be stressed that it is quite clear, at least frgedanken
experimental point of view, why GR and QT are incompatible: the more accurately
one may try to determine (i.e., localize) the spacetime metric, the more energy one
must employ, the stronger the dynamical perturbations inflicted on it, the higher
the uncertainty of its local determinatiéh. Another way to say this is that we
cannotdistinguish or measure the proper pseudometric distance between spacetime

46See (Sorkin, 1995) for some discussion on this affinity.

4"That is to say, the CEP on which GR is essentially based comes straight into conflict with the
Uncertainty Principle on which QT is founded (Candelas and Sciama, 1983; Doneiiy& 984,
1985; Sorkin, 1995).
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events (via the gravitational potentigl,) at a resolution higher than the Planck
length (p &~ 10-3°m) without creating a black hole which, in return, “blurs” this
separation of their§ This limitation alone is sufficient to motivate some kind

of “topological foam” conception of spacetime at quantum scales (Raptis and
Zapatrin, in press; Wheeler, 1964). An analogous incompatibility (of physical
principles) that may hinder the development of a quantum theory of the dynamics
of a finitary causality has not been foreseen yet. We hope that such a fundamental
conflict of physical principles will be abseab initio from an innately locally

finite dynamical theory of quantum causality, or at least from the kinematics of
such a theory like the one that we will propose in section 5.

This lengthy prolegomenon to the introduction of the flat qausets in (Raptis,
2000b) highlights two important aspects of our present endeavor: first, our locally
finite, and to be gauged subsequently, gausets may eweidéio the infinities of
QGR on asmooth manifold, and second, as quantum causal-topological structures,
they grope with the problem of the structure and dynamics of spacetime at quantum
scales at a level deeper than QGR proper which is supposed to study solely the
quantum aspects of the dynamics of the metrical structure of the world, because
we have seen already at the classical level that causality, as a partial order, and
its morphisms, determine the conformal geometric structure of flat Minkowski
space and its symmetries (Alexandrov, 1956a,b, 1967; Bombelli and Meyer, 1989;
Robb, 1914; Sorkin, 1990a,b; Zeeman, 1964, 1967). After all, as Bonabeilli
successfully observed in (1987), it is such a model for events and their causal
relations that uniquely determines spacetime as a 4-dimensional, conti@®us (
differential C°>°-smooth), and Lorentzian (i.e., of signatur@) metric manifold.

We commence our brief review of gausets by first recalling very briefly
some important facts about finitary substitutes for continuous spacetime topology
(Raptis, 2000a,b; Raptis and Zapatrin, 2000, in press; Sorkin, 1991X heta
bounded region in a continuous spacetime manifétdl andi/ = {U} a locally
finite open cover of it° Any two pointsx andy of X are said to be indistinguishable
with respect to its locally finite open cov&rif YU € U : x e U < y € U. Indis-
tinguishability with respect to the subtopolo@yi{)>* of X isan equwalence rela-
tion on the latter’s points and is symbolized by Taking the quotienX/ “_F

48This is the arch paradox of event localization that makes the conception of a quantum theory of
gravity hard even in principle: the more accurately we try to localize spacetime events, the more we
blur them, so that our sharpest determinations of them can be modeled after coarse, rough, fuzzy,
“dynamically fluctuating” open neighborhoods about them as in (Bretlal, 1999; Raptis, 2000a,
2001; Raptis and Zapatrin, 2000, in press; Sorkin, 1991, 1995; Zapatrin, 1998).

49By “bounded” we mean “relatively compact” (i.e., a region whose closure is compact). By “contin-
uous” we mean th€? aspects of classical spacetime (i.e., its features as a topological manifold).

50That is to say, every point evertin X has an open neighborhod®(x) that meets only a finite
number of open setd in /.

5L7(U) consists of arbitrary unions of finite intersections of the open sets in the tover
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results in the substitution oX by a space- consisting of equivalence classes

of its points, whereby two points in the same equivalence class are covered by
(i.e., belong to) the same, finite in number, open neighborhdodsl/, thus are
indistinguishable by (our coarse observations in) it.

Let x andy be points belonging to two distinct equivalence classek.in
Consider the smallest open sets in the subtopolb@y) of X containingx andy
respectively givenbyA(x) :=nN{U e U :xeU}andA(y):=n{U e U:ye
U}. Define the relatior> betV\éleem andy asfollowsx — y <& A(Xx) C A(y) &

x € A(y). Thenassume that~ y in the previous paragraph standsxor> y and

y — X;%2 write X <> y. — is a partial order ori- and the continuouX has been
effectively substituted by the finitaly which is aTg topological space having the
structure of a poset (Sorkin, 1991). Sorkin uses the finitary topological and partial
order-theoretic languages interchangeably exactly due to this equivalence between
To finitary substitutes and posets. For future purposes we may distill this to the
following statement: in (Sorkin, 1991) a partial order is interpreted topologically.
We shall call it “topological partial order” and the poset encoding it “topological
poset” (Raptis, 2000b).

One can show that topological posets have an equivalent representation as
simplicial complexes if instead of using Sorkin’s “equivalence algorithm” above,
one uses Alexandrov’s “nerve construction” (Alexandrov, 1956a,b, 1961; Raptis
and Zapatrin, 2000; Zapatrin, in press). In the nondegenerate cases, the posets
associated with Alexandrov nerves and those produced by Sorkin’s algorithm
yielding Fs from X relative tolds, are the same, so that both are “topological
posets” according to our denomination of tRe (Raptis, 2000b). In fact, the
correspondence between the poset category consisting of topological posets/poset
morphisms obtained from Sorkin’s algorithm and the poset category of simplicial
complexes/simplicial maps obtained from Alexandrov’s construction, is functorial
(Raptis and Zapatrin, 2000; Zapatrin, in press).

In (Raptis and Zapatrin, 2000) an algebraic representation of topological
posets was presented using the so-called Rota incidence algebras associated with
posets (Rota, 1968). The Rota incidence algébad a posetP was defined there
by using Dirac’s quantum ket-bra notation as follows:

Q(P) = spar|p)(ql: p—~> g€ P},
with product between two of its ket-bras given by:
:|p><3| ifg=r
[pXal - [r) (sl =[p)Xalr){sl=(qlr)-Ip)sl = :
0 otherwise

Evidently, for the definition of the product if2, the transitivity of the partial
order— in P is used.2(P), defined thus, is straightforwardly verified to be an

52That is to sayx andy have the same smallest open neighborhood about th&nii).
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associative algebrd.WhenP is a finitary topological poset in the sense of Sorkin
(1991), its associated incidence algebra is called “topological incidence algebra”
(Raptis, 2000Db).

We may define purely algebraically a topology on any incidence algebra
associated with a posé& by considering its primitive spectrui consisting of
(equivalence classes of) its irreducible representations (Zapatrin, 1998), whose
kernels are primitive ideals in it, in the following way according to Bresltal.
(1999). With every poinp in P the following ideal inQ2 is defined as:

lp = sparfla){r| - [a)r| # [p)(pPl},

so that the Rota topology 6(P) is generated by the following relatignbetween
“points” I, andlg in its primitive spectruns:

+
loolg < Tplglglp) C 1pN lg.

Ithas been shownthatthe Sorkin topology of atopological pesethe same asthe
Rota topology of its associated topological incidence alg&€{iRa) exactly when

the generating relatiop for the latter is identified with the transitive reductien

of the partial order arrows> in P (Breslavet al., 1999; Raptis, 200015}. This
means essentially that the “germ relations” for the Rota topology on the algebra
Q associated with the finitary topolody are precisely the immediate arrows

in the latter topological poset which, in poset parlance, are called “the covering
relations of the poset”. This is an important observation to be used shortly in order
to define in a similar way the germs of quantum causal relations in a qauset with
respect to which finsheaves of the latter will be defined in the next section as
structures that preserve precisely these local quantum causal topological “germ
relations.”

To this end we give the definition of gausets. First, a causet is defined in
(Bombelli et al, 1987) as & locally finite set of points endowed with a partial
order corresponding to the macroscopic relation that defines past and future
Local finiteness may be defined as follows: useof a posetP, interpreted now
as a causal relation on the set of verticesofto redefineA(x) for somex € P

53The associativity of the product of the incidence algefris due to the transitivity of the partial
order— of its associated posé?. As we saw in section 2, it is precisely the latter property of
causality, when modelled after the globally inertial, that is regarded as being responsible for
the flatness of Minkowski space determined-by It follows that a localization or gauging of
causets and their corresponding gausets in order to curve them, by providing a connection on a
principal finsheaf of theirs, will “cut-off” the transitivity of the causets and the associativity of their
corresponding gausets, and will restrict it locally (i.e., stalk-wise) in the finsheaf thus implement
the FEP of section 2.

54That is to say,lp is p-related tolq if and only if (p 5 PDe(p>DA@ :p—>r1 —>Q);
p,q,r € P](i.e., only forimmediately connected or contiguous verticeBJn
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asA(X)={ye P:y— x}, and duallyV(x) = {y € P : x — y}. A(X) is the
“causal past” of the evemt, wheread/ (x) its “causal future.” Then, local finiteness
requires the so-called Alexandrov set or “causal inten#gX, y) := V(x) N A(y)

to be finite for allx, y € P such thatx € A(y). In other words, only a finite
number of events “causally mediate” between any two eveatsly, withx — v,

of the causefP. In a sense, the finitarity of the topological posets translates by
Sorkin’s semantic switch to the local finiteness of causal sets, although it must be
stressed that the physical theories that they support, the discretization of topological
manifolds in (Sorkin, 1991) and causet the@gr sein (Bombelli et al,, 1987;
Sorkin, 1995) respectively, are quite differentin motivation, scope and aim (Raptis,
2000b; Sorkin, 1990a,b, 1991, 1995).

At the same time, it was Sorkin who first insisted on a change of physical
interpretation for the partial ordes of finitary posetsP “from a relation encod-
ing topological information about bounded regions of continuous spacetimes, to
one that stands for the relation of causal succession between spacetimé events
(Sorkin, 1995). In (Raptis, 2000b), this fundamental semantic switch was evoked to
reinterpret the incidence algebras associated with the finitary posets in (Raptis and
Zapatrin, 2000) from topological to causal. Thus, causal incidence algebras were
defined as th&s associated with finitary pose®swhen the latter are interpreted
as causetdlaBombelliet al. (1987). Of course, in our pursuit of a cogent quantum
theory of the dynamics of causality and,extensoof gravity, such a change of
physical meaning of finitary partial orders from spatial/choro-logical/topo-logical
to temporal/chrono-logical/causal is very welcome for the reasons briefly given
earlier in this section.

Finally, in (Raptis, 2000b) the quantum physical interpretation given to topo-
logical incidence algebras in (Raptis and Zapatrin, 2000) was also given directly
to causal incidence algebras. In effect, the quantal interpretation of the causal
incidence algebras rests essentially on the fact that in the new Rota algebraic en-
vironment the causal arrows of the causets from which these qausets derive can
coherently superpose with each other—an operation that is prominently absent
from the respective “classical” causets of Bombetlal. (Raptis, 2000b; Raptis
and Zapatrin, 2000, in press). Totally, gausets were defined as the causally and
quantally interpreted Rota incidence algebras associated with poset finitary sub-
stitutes of continuous spacetimes. It follows that the generataf topological
relations in the topological posets of Sorkin becomes the gashguantum causal
relations in qausets.Its interpretation is as “immediate quantum causalftghd
it is exactly due to its natural Rota algebraic representation that qausets are sound

55Due to its causal instead of topological meaning, we are going to wiiistead ofo from now on
for this local quantum causal topological variable.

56 As we said, the epithet ‘quantum” refers precisely to the pOSS|b|I|ty for coherent quantum superpo-
sitions of the causal arrows & in its associated incidence aIgelﬁéP)
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models of quantum causal spaces (Finkelstein, 1988; Raptis, 2000b6)the
algebraic correspondent in the causal incidence algéhlfahe immediate causal
or contiguous or covering relatios> of its associated causét (Breslavet al.,
1999; Raptis, 2000b; Raptis and Zapatrin, 2000).

The immediate quantum causality represente@ lnythe incidence algebra
associated with a causet is ideal for implementing the FLP of the previous sec-
tion. In particular, it explicitly shows that the physically significant, because local,
quantum causality is the relatio® between immediately separated events in a
finitary spacetimeX (Finkelstein, 1988; Raptis, 2000b). Its nonlocal (Finkelstein,
1988) transitive closure, the partial order in the associated causet gener-
ates P’s (globally) inertial Minkowskian causal topology which, being a fini-
tary poset, essentially determines a locally finite version of flat Minkowski space
and its global orthochronous Lorentz symmetries (Alexandrov, 1956a,b, 1967;
Robb, 1914; Zeeman, 1964, 1967). This is spacetime, as a classical causal space,
ungauged.

It follows that in order to curve gqausets, a gauged or localized versign of
must be employed, that is to say, we should consider a dynamical local quantum
causal connection relation that only locally (i.e., event-wise) reduces to a transi-
tive partial order—the inertial Minkowskian causality of a reticular and quantal
Minkowski space (as a gauset) according to the FEP. In turn, this means that
only the transitive reductior> of the flat global inertial causality> will be the
physically significant local dynamical variable in a curved finitary quantum causal
space. We will model this conjecture by a nonflat connectigron a finsheaf of
gausets in section 5.

We conclude the present section by discussing briefly two relatively important
aspects of qausets, one physical, the other mathematical.

The physical aspect of qausets pertains to their operational significance. Al-
though the operational soundness of quantum discretized spacetimes has been
fairly established (Raptis and Zapatrin, 2000) in that we have a sound and prag-
matic operational interpretation of quantal topological incidence algebras, we still
lack such an account for gausets. Now, GR’s operational significance can be
summarized in the followingg,,(x), which mathematically represents the lo-
cal gravitational potential, is supposed to encode all the information about our
local experimental tampering with spacetime events via synchronized clocks and
equicalibrated rulers so that, in principle, from the data of such a local experi-
mental activity, one can construct the metric tensor at a neighborhood of an event.
In such an operational account, there is little room left for a “passive” realistic
interpretation of the gravitational field as an independent entity or “real substance
out there” whose interaction with our instruments yields readings of events. The
operational approach is in an important sense more active in that it entails that
spacetime attributes are extracted from “it” by our very experimental actions on
(i.e., our planned, controlled and in principle reproducible observations of) “it.”
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Also, this seems to be more in accord with the observer-dependent conception of
physical reality that QT supports (Finkelstein, 1996).

For the causets of Bombedét al. (1987) and Sorkin (1990a,b), Sorkin (1995)
contended that an operational interpretation is rather unnatural and lame. On the
other hand, in view of the algebraic structure of qausets and the sound quantum-
operational interpretatioa la Raptis and Zapatrin (2000) that their topological
counterparts were given, and because as we mentioned in section 2 the local field
of gravity g, (x) can also be interpreted as the dynamical field of the local causal
topology of spacetime, we still hope for a sound operational interpretation of them.
At the end of the next section we present our first attempt at a sound operational
interpretation of the locally finite quantum causality encoded in qausets based on
the analogous operational meaning of the finitary poset substitutes of continuous
spacetimes and their incidence algebras (Raptis and Zapatrin, 2000; Sorkin, 1991,
1995). A more thorough presentation of the operational character of gausets will
be given in (Raptis, in preparation-b).

The mathematical aspect of qausets that we would like to discuss next is
their differential structure. Recently, there has been vigorous research activity on
studying differential calculi on finite sets and the dynamics of networks (Dimakis
etal,, 1995), as well as on defining some kind of discrete Riemannian geometry on
them (Dimakis and Miler-Hoissen, 1999). The main result of such investigations
is that with every directed graph a discrete differential calculus may be associated.
It follows that for the locally finite posets underlying qausét$i.e., the causets
P associated with them), which are also (finitary) digraphs, there is a discrete
differential calculus associated with them (Raptis and Zapatrin, 2000, in press;
Zapatrin, in press). In this sense, but from a discrete perspective, a partial order
determines not only the topological{), but also the differential@>) structure
of the spacetime manifold with respect to which the Lorentzjgn which is
also determined by causality as a partial ofdes, then defined as a smooth field
(Bombelliet al., 1987).

However, as we noted in the introduction, thatdér-Cartan type of dis-
crete differential operatadt defined in such calculi on finite sets is a flat sort of
connection (Mallios, 1998a). This is not surprising, since the underlying finite
spacetimeX is taken to be a structureless point set—in a sense, a kind of discon-
nected, noninteracting dust. All the digraphs supporting such calculi are assumed
to be transitive, so that if some causal interpretation was given to their arrows, by
our heuristic principles of section 2 concerning the relation between an inertial
transitive causality and flatness, their corresponding differential calculi should be
flat as well?® This is the “curvature problem” alluded to in the introduction. To

57 At least locally in a curved spacetime (see section 2).
58That is to say, the differential operators defining such calculi are flat connections in the sense of
Mallios (1998a).
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evade it, in section 5 we straightforwardly gauge (a finsheaf of) gausets so that a
nonflat connectiotd,, is naturally defined on them. The physical interpretation of
such a gauging of thd of flat gausets to th® = d + A of the curved finsheaf

of qausets, will be the first essential step towards a finitary, causal and quantal
version of Lorentzian gravity.

Inthe next section we recall the finsheaves from (Raptis, 2000a). Our principal
aim is to bring forth the sense in which a finsheaf of continuous maps over Sorkin’s
topological posets substitutes the sheatbftopological observables over a con-
tinuous spacetime manifold, then try to “read” a similar physical meaning for a
finsheaf of qausets, namely, that they model finitary and quantal replacements of
the causal relations between events in a bounded region of flat Minkowski space
M, as well as the causal nexus 6f°-smooth fields in such a region of the
smooth differential manifold\1. At the same time, the finsheaves of their con-
tinuous symmetries may be thought of as reticular analogues of the continuous
orthochronous Lorentz topological Lie group manif@@(1, 3)'. Thus, in such
a scenario, not only the operational significance of our own pragmatic finitary
“perceptions” of spacetime structure and its dynamics will be highlighted, but also
the operational meaning of our rough and dynamically perturbing determinations
of its symmetries—them too to be subsequently gauged.

4. FINITARY SPACETIME SHEAVES AND THEIR
FLAT QUANTUM CAUSAL DESCENDANTS

In (Raptis, 2000a), a finshe&f of continuous functions on a bounded region
X of a topological spacetime manifold was defined as the sheaf of sections of
continuous maps oX relative to its covering by a locally finite collection of open
subsets oM. Since, as we saw in the previous section, for every such finitary open
coverl, of X a finitary topological posef, was defined and seen to effectively
substituteX, the aforementioned sheaf can be thought of as hdyjlag base space.
Thus, we writeS,(F,) for such a finsheaf (Raptis, 2000a). Indeg§dwas seen to
have locally the same finite poset topology as its base dgaéthence its quali-
fication as a sheaf (Bredon, 1967; Mac Lane and Moerdijk, 1992; Mallios, 1998a).

Now, as we briefly alluded to in the introduction, the essential result from
(Raptis, 2000a), and the one that qualifies finsheaves as sound reticular approxi-
mations of the continuous spacetime observables,aa that an inverse system of
finsheaves has an inverse limit topological space that is homeomorp(ix Je-
the sheaf of continuous functions &4 in the same way that in (Sorkin, 1991) an
inverse system of finitary poset substitutes<ofvas seen to “converge” to a space
that is homeomorphic to the continuous topological maniflidself.

59Technically speakings, was locally homeomorphic to the finitary topological posgbf (Sorkin,
1991).
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To define finsheaves of qausets, we adopt from (Raptis and Zapatrin, 2000)
the association with every poset finitary substititeof a bounded spacetime
region X, of a Rota incidence algebi@(F,), as it was shown in the previous
section. Ask, is a topological poset, its associat®d is a topological incidence
algebra (Raptis, 2000b). As we noted in the previous section, to get the qauset
Q. from Q,, we “causalize” and “quantize” @ la Raptis (2000b). As a result
of such a causalization, we wrifefor the generating relation @,s (quantum)
causal topology in the same way thain the previous section was seen to be
the generator of2’s “spatial” Rota topology. The significance pfis (quantum)
causal, while ofo only topological.

Finsheaves of qausets are then defined to be otﬁgcts Qn(Fn) _Whereby
the local homeomorphism between the base causﬁlnsmd the algebran is now
given, in complete analogy to the finsh&i(Fn) of topological posets in (Raptis,
2000a), ap — g & loplg, (P, O € Fo, Ip, Iq € S(Qn)) As it was mentioned in
the previous section, the Sorkin poset topology on the topologigabbtained as
the transitive closure of the immediate contiguity relatiérbetween its vertices,
is the same as the Rota topology of its associated topological incidence algebra
Qn generated by, only now these relations have a directly causal/temporal rather
than a topological or “purely spatial” significance (Raptis, 2000b; Sorkin, 1995).

Also, in the same way th&,(F,) was seen to be the finsheaf of continuous
maps on theF, obtained fromX with respect to its locally finite open cover
Un and generated by its (germs of) continuous sections (Raptis, 2000a), we may
similarly considetG,, := £,(2,) to be the finsheaf of local (quantum) causal (auto)
morphisms ofQn. We may callG, “the finitary spacetime transformation sheaf
adjoint to $.."60 The (germs of) continuous sections of this sheaf are precisely
the maps that preserve the local (quantum) causal topqﬂmj@n, so that by the
definition of the latter they are tte,-homomorphisms “restricted” to the primitive
idealsl , andlq in them—the Gel'fand “point events” of the gausatet which is
the finitary base space of the finsh&x{.

The finsheafG, consists of the local causal homeomorphisinsof the
local (quantum) causal topology (generated pyf the qausefzn which, by the

60G,, is a group sheaf with carrier or representation or more commonly known as “associated” sheaf
that of gausets,. The proper technical name fax, is “principal sheaf with structure grouf”
although, as we also mentioned in the introduction, we use the latter name for thénpSﬁI.

61This topological interpretation of the primitive ideals of an incidence algébassociated with a
finitary poset substitut& in (Sorkin, 1991) as “space points,” comes from the Gel'fand “spatial-
ization procedure” used in (Breslat al., 1999; Zapatrin, 1998), whereby, the point vertices of the
poset substituté of X were corresponded to elements of the primitive spectSuhits associated
incidence algebr& which, in turn, are the kernels of (equivalence classes of) the irreducible repre-
sentations of2(F). In our causal versiof of 2, the primitive spectrum of the former is denoted by
Sandits points (i.e., the primitive ideals ©f,) are interpreted as “coarse spacetime events"—they
are equivalence classes ¥fs point events relative to our pragmatic observatidfysof them of
limited power or energy of resolution (Cole, 1972; Raptis, 2000a; Raptis and Zapatrin, 2000).
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discussioninsection 2, constitutes the finitary version of the orthochronous Lorentz
groupL ™. HenceG, may be thought of as the finitary substitute of the continuous
Lie group manifold_* which, due to the (local) quantal character of the gausets in
€, also inherits some of the latter’s “quantumness” in the sense that since qausets
coherently superpose with each other locally according to the FLSP of section 2,
so will their symmetry transformations. This is in accord with Finkelstein’s insight
that if spacetime is to be regarded as being fundamentally a quantum system, then
so must be its structure symmetries (Finkelstein, 1996). Thus, the finSheaf
together with its adjoinG, of its local symmetries, constitute a princip@h-
finsheaf of qausets and their finitary local causal (and quantal) homeomorphisms.
We may denote this principal finsheaf either Mn = Gn(Sn) or more
analytically by/\/ln = (Fn, Qn, L n),%2 with the corresponding local homeomor-
phisms defining them as finsheaves (with a quantum causal topological interpre-
tation) being denoted & : (Fn, g N (Qn, 0) and)nn : (Qn, 0) — (Sn On)—
where the reticular local causal homeomorphi)sncorresponds @-preserving
map to an element in the reticular Lie algelgreof the structure groufs, = L
of the G,-finsheafM,,.%3
The main conjecture in this paper, briefly mentioned at the end of (Raptis,
2000a) and in the introduction, and not to be analytically proved here, is that an
inverse systeniC of theG,-finsheaves of gausefs!,, “converges” to the classical
flat MinkowskianG-sheaf X ¢ M, ©, d, L™), whereX isabounded regioninthe
smooth, flat Minkowski manifold\, which serves as the base space for the sheaf
of smooth differential forms2 on it. This sheaf has as stalks ov€s point events
isomorphic copies of th&-graded module of Cartan exterior differential forms
Q:=Q%°@ Q'@ Q?, ..., dis the nilpotent and flat &filer-Cartan connection on
the sheaf effecting (sub)sheaf morphisths@' — Q*1 in the differential triad
(X, 2, d) (Mallios, 1998a), whereak™ is the continuous structure group of the
sheaf consisting of the global orthochronous Lorentz transformation'st 6f
Heuristic arguments supporting this conjecture are:

(@) Thetopological (i.eG°) structure of K of) M as a topological manifold
arises as the limit space of an inverse system of finitary incidence algebras

62The symbol ‘M, for * Gn(Sy)” will be explained shortly.

63g, is the finitary version of the Lie algebra of the orthochronous Lorentz grow, = L+ :=
SQ(1, 3)' whose algebraic structure is supposed to respect the “horizontal” reticular causal topology
of &n which is generated by—-the germ of the local quantum causal topology” of the gqauset
stalks$2n of Gn's associated finshe&, (Raptis, 2000a).

64This description of the sheafMt, 2, d, L*) makes it theG-sheaf-theoretic analogue ofG-
bundle of exterior forms having as base space the flat Minkowski differential manifglds fibers
modules of smooth Cartan forms g, as flat generalized differential (i.e., connection) structure
the nilpotent Kihler-Cartan differentia, and as structure group the orthochronous Lorentz group
L*. One may regard this sheaf as the mathematical structure in which classical as well as quantum
field theories are formulated in the absence of gravity.
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(b)

(©

(d)

Qn(Fy), now topologically interpreted, as shown in (Raptis and Zapatrin,
2000; Sorkin, 1991). It can also be determined from the causally inter-
preted incidence algebr&s,(F ) as suggested in (Bombedit al., 1987).

The differential (i.e.C*-smooth) structure ofX in) M as a differen-

tial manifold supporting fibers of modul&s of Cartan’s exterior forms,
arises as the limit space of an inverse system of finitary incidence alge-
brasQn(F,), since the latter have been seen to be discrete differential
manifolds in the sense of (Dimakis anduNEr-Hoissen, 1999; Raptis
and Zapatrin, 2000, in press; Zapatrin, in press). In fact, as Dineskils
(1995) show, the discrete differential structure of such discrete differen-
tial manifolds also determines their (finitary) topoldgyl he differential
structure ofM can also be determined from the causally interpreted in-
cidence algebra®,(F,) as suggested in (Bombeét al., 1987).

A reticular analogue of the Minkowski metrig,, = diag(—1, +1,

+1, +1) on M is determined by the causal incidence algeQraas-
sociated with the causal sét, also as suggested in (Bombedi al.,
1987)% It must be emphasized however that in order to determine an in-
definite Lorentzian spacetime metric suchygs the causally interpreted
finitary incidence algebras must be used, not the topological ones. This is
because, as it was shown in (Dimakis andlli-Hoissen, 1999), the dis-
crete metriq that is naturally defined on a discrete differential manifold
such as the finitary topological incidence algebra of (Raptis and Zapatrin,
2000), is positive definite (Riemannian), rather than indefinite (pseudo-
Riemannian or Lorentzian). This is the “signature problem” alluded to in
the introduction. The solution of the “signature problem” by using causets
instead of topological posets justifies Finkelstein’s (1988) and Sorkin's
(1995) demand for a physical causal or temporal topology instead of an
unphysical spatial one, as we emphasized in the previous section.

The Kahler-Cartan differential operatal that defines the differential
structure ofM in (b) is a flat connection on the differential triad sheaf
(M, @, d) (Mallios, 1998a), as itis expected to be for the flat Minkowski
base spacéV. In (Dimakis and Miller-Hoissen, 1999), a connection

V and its associated curvatuRe:= —V? are defined, and compatibility
conditions betweelv and the definite metrig are given that make the
connection a metric one. However, since as it was mentioned ig {g),

a positive definite metricy will not do, for we are looking for a pseudo-
Riemannian (Lorentzian) connection on our finsheaves of qausets. Fur-
thermore, as itwas also shown in (Dimakis andlli-Hoissen, 1999), for

65That is to say, tifferentiability implies continuii—the classic motto in university Calculus.

66 As we mentioned in the introduction, the work of Robb (1914) already shows that causality as a
partial order determines a Lorentzian metric up to its determinant (spacetime volume measure). See
also (Bombelli and Meyer, 1989; Sorkin, 1990a,b).
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the most general (universal) discrete differential calculus on a discrete dif-
ferential manifoldV reduces to the flat (because nilpotengffer-Cartan
differentiald, so that there can be no discrete (not even positive definite,
i.e., Riemannian) “gravity” on it. This is the “flatness problem” alluded to
inthe introduction. The flatness problem will be tackled in the next section
by a straightforward localization or gauging of gausets in their finsheaves.
(e) Finally, for the sheaf of global orthochronous Lorentz transformations
that we expect to arise as the group sheaf (Mallios, 1998a) of (global)
symmetries of its adjoint or associated flat Minkowskian shédf 2, d)
from an inverse system of finsheav@s = cn(fzn) in the same way that
the flat differential triad 1, €2, d) arises from an inverse system of the
finsheaves, = fzn(Fn), the work of Zeeman (1964) provides significant
clues. The key idea from (Zeeman, 1964) for our finitary considerations
here is that when causality is modeled after a partial order between events
in M, its causal automorphisms constitute a gr@ijsomorphic to the
conformal orthochronous Lorentz groug. Also, G is, by definition, the
group of homeomorphisms o¥1 regarded as a causal space having for
topology the causal Alexandrov (1956a,b, 1967) one (Torretti, 1981). It
follows that the maps in the finshe@f,, being by definition local homeo-
morphisms of the qausén, respect the local (quantum) causal topology
of &, which, in turn, effectively corresponds to the generating or germ
relationg. These are the finitary (and quantal) analogues of the causal au-
tomorphisms in (Zeeman, 1964), as we argued earlier. In fact, in the next
section, by a heuristic implementation of the FEP, FLP, and FLRP given
in section 2, we will use these finitary causal morphisms to define a fini-
tary, quantal, and causal gauge-theoretic version of Lorentzian gravity on
the gauged\1,, by supplying it with a nonflag,-valued spin-Lorentzian
connectionA, and its associated curvatufg.

For the time being we note that the expected Minkowskian classical limit
G-sheaf K c M,d, Q, L"), being flat, admits of global sections (Mallios,
1998a), aresultwhichin physical parlance is known by the following fact: there is a
globalinertial coordinate patch (frame or gauge) covering the entire flat Minkowski
space (Torretti, 1981). However, in a curved spacetivhethere are only local
inertial frames (gauges) covering (i.e., with origin soldered at) its point events
according to the CEP. These are independent “kinematical frames” (gauge pos-
sibilities) as we said in section 2 and this “kinematical independence” or “gauge
freedom” motivates us here to define a nonflat connection on (i.e., to gauge) the
flat Gy-finsheafM,,. Then, the resulting gauged, hence curved, finsheaf will not
admit global sections (Mallios, 1998a).

We close this section by commenting on the operational significance of our
Gy -finsheaf model of quantum causality and its (global) causal symmetries. If one
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takes seriously the conjecture above about the convergence of the inverse system
or netk := {M,} to the classical flat MinkowskiaB-sheaf X ¢ M, Q,d, L")

at maximum power of resolution or infinite localization Xfinto its point events

a la Sorkin (1991) and Raptis (2000a), then sound operational meaning may be
given to qausets and their finitary symmetries in complete analogy to the one given
to topological poset substitutés of bounded regionX of continuous spacetime
manifoldsM in (Sorkin, 1991, 1995) and their quantal algebraic relativgd-,)

in (Raptis and Zapatrin, 2000, in press). Since He were seen to converge

to X, they were taken to be sound approximations of its point events, whereby
a coarse determination of the locus of an evemh X is modeled by an open

set or region about it. We simulate this semantic model forRk®in the case

of our qausets{?n as follows: we introduce a new “observalffefor spacetime
events called “causal potential (or propensity) relative to our locally finite (coarse)
observationg/, of them,” symbolized byZm so that the causal relation— y
between two events iR, can be read aschas higher causal potential thgh(i.e.,
formally: $n(x) > q_in(y)).68 Thus, causality may be conceived as “causal potential
difference between events relative to our observations of tfiem.”

This definition ofq?n applies in case the caudeyf, is the causally interpreted
finitary poset substitutg, of a bounded spacetime regighas defined in (Raptis,
2000b). If F, derives from the locally finite open covés, of X, ¢, in F, may
be read as follows: the causal potentﬁ‘;\l of an eventx in X relative to our
observationg4, of X corresponds to the “nerveV coveringx relative tol4,,

6770 be established as a dynamical variadlgin the next section where we gau.gan.

68This formal labeling of events b&n is in complete analogy to the natural numbétabeling of
eventsa la Rideout and Sorkin (2000). There the sequential growth dynamics proposed for causets
was seen to be independent from theitabeling, thus in some sense independent of an external
(background) discretd-valued time gauge parameter (i.e., it is “external time-covariant”). In the
next section we will argue that, similarly, the reticular gauge conne@gnbased on which the
dynamical law for qausets is expected to be formulated as an equation between sheaf morphisms
(Raptis, in preparation-c), is gaugfa-independent, thus alsdn-covariant. See also (Raptis, in
press, 2001) for more on this, but from a more categorical or topos-theoretic perspective.

691n a plausible “particle interpretation” of our reticular scheme, whereby a network of causet (or
gauset) connections is interpreted in the manner of Dimetked. (1995) as the reticular pattern
of the dynamics of particles or quanta of causality—which may be called “causons” for obvious
reason—the causal connectign— y has the following rather natural physical interpretation in
terms of the causal p0tenti¢7|1: “a causon descends from the evandf higher causal potential
to the eventy of lower causal potential.” This is in literal analogy, for instance, with the motion
of an electron in an electromagnetic potential gradient (or connection!).ieldence the natural
denomination of5, as “causal potential.”

7O0ne can equivalently call it “the causal potential of an eveiri X at the limit of resolution of
X corresponding to/,” (Cole, 1972; Raptis, 2000a). The definitiondf as being relative to our
coarse spacetime observations is reflected by its index which is the same as that of the locally finite
open coveid, of X—a finiten signifying a pragmatic limited (finite), but at the same time coarse
and perturbing, power of resolution &finto its point events.
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wherebyN'(x) := {U € U, | x € U} (Raptis and Zapatrin, 2000).Then, at the
level of resolution of the spacetime manifold—now regarded as a causal space—
corresponding td-,,, x — Yy (i.e., “x causes”) means operationally that/(y) c
N(X) (i.e., “every (rough) observation of is a (coarse) observation &f)%;
thencep,(x) > ¢n(y).

In terms of the definition of the smallest open seté/jncontainingx and
y, A(X) and A(y), given in section 3 and in (Raptis, 2000b; Sorkin, 1991), that
istosay,A(X) = N{U € Un | x e U} = NN(X), N(y) C N(x) readsA(x) C
A(y) with “C” standing for strict set-theoretic inclusion. This is precisely how
the topological partial order> in F, was defined in (Sorkin, 1991), only in our
F,itis reinterpreted causally (Raptis, 2000b)t must be mentioned that such
a conception of (quantum) causality as a difference in cardinality (or degree) was
first conceived in a different mathematical model by Finkelstein (1969), whereas
in (Breslavet al.,, 1999), and in a model similar to ours, the colleciignof open
sets were assigned to teams (or organizations) of “coarse observers” of space-
time topology and it is explicitly mentioned that the relations> y means that
“the event x has been observed more tiflgsthe team of observershan the
eventy’ There, however, the=" obtained from Sorkin’s “equivalence algorithm”
was seen to still have its original topological meaning and it was not given a directly
causal significance like in our theofy.

From the definitio ofq?n above, it follows that the generator of local (i.e.,
contiguous) causal potential differences between evenl%niru:orresponds to
the relation of immediate causality> linking events, say andy, such that
A¢_5 X, y) = $n(x) q_ﬁn(y) = 1. We may symbolize this “contiguous causal po-
tential difference”—the “local germ of the quantum causal potential, ’Eppylf
we pass to the qauséln associated withF,, or equivalently, to the finsheaf
S, of gausets, the aforementioned generator of causal potential differences as-
sumes a completely algebraic expressiorpaggain, we recall from section 3
thatlpﬁl Slplg(#lplg) € 1p N 1 generates the quantum causal Rota topology
of Sh by relating primitive ideald andlq in the primitive spectrunﬁ‘(Qn) (p q
€ Fn) if and only if p—> g and Ar < Fn.p—>r—>q(|e iff p = qin Fn)
(Breslavet al., 1999; Raptis, 2000b).

"In (Raptis and Zapatrin, 2000), nerves were seen to be simplicial complexes and the topological
discretization of manifolds based on them is due to Alexandrov (1956a,b, 1961).

72See (Breslaet al, 1999) for a similar operational semantics, but applied to the topological not to
the causal structure of spacetime like we do here.

73Note that event vertices in the cauggt that are causally unrelated (i.e., “space-like”) are covered
by different nerves iri4, of equal simplicial degree (Raptis and Zapatrin, 2000). They are the
reticular versions of equal-time spacelike 3-slices of a (globally) hyperbolic spacetime manifold.

"4That is, the quantum observable or dynamical variable in their theory is topology proper, not local
causality. See (Raptis and Zapatrin, in press) for more discussion about this distinction.
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Here, in the algebraic setting of qausets, the generator of quantum causal-
ity (i.e., the germp; of the quantum causal potentizﬁ,l,) relative to our finitary
spacetime observations i, p, has the following operational and quanala
Heisenberg (because noncommutative algebraic) meaning that reads from its very
algebraic definition: point events @,, which correspond to primitive ideals in
S(fzn),75 have a product ideal that is strictly included in their intersection ideal,
with the “directedness” (asymmetry) of their immediate quantum causal connec-
tion, say “fromp-to-q” (p = q), being reflected in the noncommutativity of their
corresponding ideals iRn (i.e., Iplg # Iplg).”® This operational description of

"5>Recall from (Breslaet al., 1999; Raptis, 2000b; Raptis and Zaptrin, 2000) and section 3 the defini-
tion of the primitive ideals in the corresponding quantum topolodidFn) : |1 := spar|g)(r| :
lay(r| # |p){pl}; where|g)({r| := (q — r) € F,. Parenthetically, it is rather interesting to ob-
serve in this definition of the primitive ideals (points) in the quantal topological incidence algebras
Qn(Fn) that the elements (ket-bras) that constitute them are quantal acts of determination of what
in the classical limit space will emerge as “momentum (covector) states” and serial concatenations
thereof (i.e., “spacetime time-like paths”); see physcial interpretation a@tbd > 1) in (Raptis
and Zapatrin, 2000). By this very definition of thgs in S(2n(Fn)), we see that the operations
of determination of pure quantum spacetime states (event®),jmamely, the elements «#°
(the|p){pls in the defintion of theé ps above; Raptis and Zapatrin, 2000), are excluded from them
(Raptis and Zapatrin, in press). So, operations of determination of what classically (i.e., at the non-
pragmatic decoherence limit of infinite refinement of the spacetime continuum into its point events)
appear as momentum states tangent to spacetime “position states” (point events) are “incompatible”
or “complementary” in Bohr’s sense with (i.e., they exclude) quantum acts of localization of the
latter. This observation shows that some kind of quantum uncertainty is built into our Rota algebraic
schemab initio thus it further justifies the physical interpretation of the limit of infinite localization
of spacetime events as Bohr's correspondence principle (Raptis and Zapatrin, 2000). The quantum
character of the noncommutative toplogy generated by the local (and dynamical) quantum causality
o is analytically studied in (Raptis, in press.)

"8This is a first indication of a fundamental noncommutativity of (acts of localization of) “points”
(i.e., “coarse spacetime events”) underlying quantum causal topology in a model like ours (where
“points” are represented by primitive ideals in the primitive speém the incidence aIgebrsz
involved). In a coming paper (Raptis, in press), the incidence algebras modeling qausets here, as
well as their localizations, are studied in the ligth of scheme theory (Hartshorne, 1983; Shafarevich,
1994) and a noncommutative dynamical local quantum causal topology for (at least the kinematics
of) Lorentzian quantum gravity is defined based on such nonabelian schematic algebra localizations
in much the same way to how Noncommutative Algebraic Geometry was defined in (Van Oystaeyen
and Verschoren, 1981) based on nonabelian Polynomial Identity (PI) ring localizations—it being
understood that Rota algebras can be regarded as PI rings (Freddy Van Oystaeyen in private com-
munication). It must be a fruitful project to compare the resulting “noncommutative topology for
curved quantum causality” in (Raptis, in press) with the one defined and studied in (Van Oystaeyen,
2000a). The second author (IR) wishes to thank Freddy Van Oystaeyen for motivating such a study
in a crucial private communication and in two research seminars; see (Van Oystaeyen, 2000b).
Ultimately, the deep connection for physics is anticipated to be one between such a noncommuta-
tive conception of the local quantum causal topology of spacetime and the fundamental microlocal
quantum time asymmetry expected tfié true quantum gravityPenrose, 1987). Again, such a
fundamental time asymmetry in a curved finitistic quantum causal space similar to ours has already
been anticipated by Finkelstein (1988). It is also entertained in (Raptis, in press).
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quantum causality if2, relative to our coarse observations of events in a bounded
region of spacetime—now interpreted as a causal space, follows from the opera-
tional description of causality in the caugetfrom which it derives via the causal
potential “observable,, defined above.

All in all, (quantum) causality is operationally defined and interpreted as
a “power relationship” between spacetime events relative to our coarse obser-
vations (or approximate operations of local determination) of them, namely, if
eventsx andy are coarsely determined By (x) and\ (y) with respect té4,, and
N(y) c N(x), then ‘x causes.” The attractive feature of such a definition and
interpretation of causality is that, by making it relativé4g we render it “frame-
or observation-dependent, ultimately, relativistic’®

In the same way, one can give operational meaning to the finitary local (quan-
tum) causal automorphisms of tl§gs in S, mentioned above. They represent
finitary operations of determination of the local symmetries of quantum causality
as encoded in the finshe&f, and they too are organized in the group finsheaf
Gy. The operational interpretation of the element&afas coarse reticular (and
quantal) replacements of the continuous local orthochronous Lorentz Lie symme-
tries of the smooth gravitational spacetime of GR will become transparent in the
next section when we gauge the flat Minkowsk@gfinsheafM,, by providing
a nonflatg,-valued connection 1-form,, on it.

5. GAUGING QUANTUM MINKOWSKI SPACE:
NONFLAT CONNECTION ON  §,

The reader was prepared in the previous sections for the present one where we
will attempt to curve the flat and quantj-finsheatM,, := G,(S,) by gauging or
localizing it. As it was repeatedly mentioned earlier, this procedure is tantamount

770One may think of the opeld s inl4, as some sort of “rough coordinate patches” or “coarse frames”
or even as “fuzzy gauges” (Mallios, 1998a) covering or measuring coarsely (i.e., approximately
localizing) the point events iX.

"8Recall that the causal potenti@, of events is defined relative to our coarse observatignsf
them, so that, as we will see in the next section, its localization (gauging) and relativization will
effectively amount to establishing a local transformation theory for it that respects its dynamics
(due to a finitary sort of Lorentzian quantum gravity), in the sense that this dynamics becomes
independent of the level of resolution corresponding to our observatigms spacetime into its
events, or equivalently, it becomes independent of the local gauges (fiaist one lays out to
chart the spacetime events and measure, albeit coarsely, physical attributes such as the gravitational
field “located there” (Mallios, 1998a). This will be then the transcription of the fundamental principle
of GR, which requires that the laws of physics are invariant under the diffeomorphism group of the
smooth spacetime manifold Dif¥{) (i.e., the principle of General Covariance), in a sheaf-theoretic
model for a curved finitary quantum causal space: “the laws of physics are equations between sheaf
morphisms”—the main sheaf morphism being the connediiqiMallios, 1998a). We will return
to this principle in section 5 where we defifig as a finsheaf morphism in our scheme and further
discuss its quantum physical implications in section 6.
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to defining a reticular nonflat spin-Lorentzian connecti¢4i® that takes values

in the orthochronous Lie algebgg = ¢, of the group finsheaB, adjoint to S,
consisting of the latter’s local quantum causal symmetries—the finitary substitute
of the continuous orthochronous Lorentz Lie group manifofdwhich, in turn,

is the structure group of (global symmetries of) the Gatfmsheaf/\/ln The re-
sulting curvedG,- flnsheaan = (Fn, €n, Ln, Dy := dy + A,) may be regarded

as a finitary, causal and quantal replacement of the classical kinematical structure
P on which GR is formulated as a gauge theory of a spin-Lorentzian connection
1-form A.

As |twas also alludedtointhe introduction, our contending that the c@yed
finsheaf Pn is a finitary, causal and quantal replacement of the classical
CartanBergmans-bundleP = (X, @, L*, D :=d + A), basically rests on the
idea that an inverse system of the former curved finsheaves of gqausets yields the
latter as a classical gravitational spacetime structure (Raptis, 2000a) at the oper-
ationally ideal limit of finest resolution or localization of into its point events,
their causal ties and the local symmetries thereof—which limit, in turn, may be
interpreted as Bohr’s Correspondence Principle yielding classical structures from
guantum ones (Raptis and Zapatrin, 2000).

Thus, we consider a bounded reg¥nf a curved smooth spacetime manifold
M. We assume that gravity is represented by a nosfai C)-valued connection
1-form A on the curved CartanBergma@abundleP = (X, @, LT, D =d + A).

First we discuss a mathematical technicality that our finsheaf-theoretic model
should meet in order to be able to define a (nonflat) conne@jsh on the (flat)

"9The reader should note the indegiven to the connectios that is the same as the one given to the
causetF,, its associated qausﬁl;1 and the latter’s local quantum causal symmetlfkasProperIy
viewed, the connectiod on theGy,- flnsheaf/\/ln = (Fn, Qn, dn, £y) in focus inherits the latter's
“finite degree or energy of resolutiari of the regionX of the curved spacetime manifol by our
coarse observatiorig, of its events, their causal ties and the symmetries of the latter (Cole, 1972;
Raptis, 2000a). The reader should notice that the imdsxalso given to the reticulardtiler-Cartan
differentiald in M, just to remind one of its discrete characdela Dimakiset al. (1995).

80Note that until now we used the gauge potentiafor the mathematical concept of connection
D, when, in fact,A is just the part ofD = d + A that makes it nontrivial (i.e., nonflat) (Mallios,
1998a). This is the physicist's “abuse” of the concept of connection, presumably due to his rather
“pragmatic” or at least “practical” attitude towards mathematics, namely, that he is interested on
the part of D that is responsible for curvature (which can be physically interpreted as the gauge
potential of a physical force). In fact, the substitution~ D = d + A is coined “gauging” in
physics jargon, whed is from a mathematical point of view a perfectly legitimate connection;
albeit, a trivial (i.e., flat) one (Mallios, 1998a). The same “abuseDof encountered in (Baez
and Muniain, 1994) where only the gauge potentlak coined “connection.” Here, we too adopt
a physicist’s approach and by “gauging our flat Minkowskian principal finshea? essentially
we mean “adjoining a nonzero connection tedp to its flat differentiald,.” This asymphony
between the mathematician’s and the physicist's conception of the notion of connection aside, one
should always keep in mind th@ is a generalized differential operator, with its nonzero part
generalizing or “extending” by the process of gauging the usual flat differential opdrator
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finsheann. Two sufficient conditions for the existence of a connecfiban an
algebra or vector sheaf or bundle over a manifibldregarded as a topological
space, are thad#l is paracompact and Hausddét#f{Mallios, 1998a). It is expected
that, since our finsheaves of gausets are finitary (and quantal) replacements of an
at leasftl;%? and relatively compa#l topological spac& (Raptis, 2000a; Sorkin,
1991), if we relaxT, to T; and paracompactness to relative compactness, we are
sgill able to define a connectidh, on a vector or algebra s[\eaf over it such as our
M (Raptis, 2000a). SP, exists (i.e., itis “defineable”) oM. In fact, we know
thatd, is already defined on the gqauset stalks\df, a la Dimakis and Miller-
Hoissen (1999) or Zapatrin (in press), and that it effects sub-sheaf morphisms
dn 1 @ — Qi1 there (Mallios, 1998a); albeit, it is a flat connection (Dimakis
and Miller-Hoissen, 1999; Mallios, 1998a)J In turn, ths = d, on the finitary,
cgusal, and quantal Minkowskian finshe®&f, means that4, = 0 throughout

My, so that by our physical terminology the latter is an ungauged, thus flat,
finsheaf®* _

To curve the flat finsheat,, by adjoining to its flat connectioty, a nonzero
term A,, we immitate in our finitary context how the curved smooth spacetime
manifold M of GR may be thought of as the result of localizing or gauging the flat
Minkowski spaceM of SR. Locally, (i.e., event-wise), one raises as a “vertical
structure” an isomorphic copy ¢¥1 over each spacetime event X C M, thus
implementing the CEP of section 2. Hence formally, acquires an event-index
x(Vx € X), My, and may be regarded as some kind of fiber space xvém
view of the differential (i.e.C°-smooth) character d¥1, which in turn may be
thought of as implementing the CLP discussed in section 2 (Einstein, 1924
geometrically interpreted as the space tangekt &ix. Totally, TM:= (), .\, Mx
is the locally Minkowskian tangent bundle & (Gockeler and Salcker, 1990)
having for fibersMy—Ilocal isomorphs of flat Minkowski space.

Then, the term “gauging” effectively corresponds to regarding these local
isomorphs of flat Minkowski space as “independent kinematical worlds,” in the
sense that two vectoss andV’ living in the vector space fiberdt, and My,

81we recall that a topological spadé is said to be paracompact if every open cover of it admits a
locally finite refinement. AlsoM is said to be Hausdorff oF2 when it satisfies the second axiom
of separation of point set topology which holds that every pair of poinid dfave nonintersecting
(disjoint) open neighborhoods about them.

82\We recall that a topological spaceis said to beT; if for every pair of pointsx andy in it there
exist open neighborhoods, and Oy containing them such that¢ Oy andy ¢ Ox.

83 As it was also noted earlier, a topological spacés said to be relatively compact, or bounded in
the sense of (Sorkin, 1991), when its closure is compact.

84As we also mentioned in the previous section, the important point to retain from the discussion
above is that in a sheaf-theoretic context like ours the role of connebtisras a sheaf morphism
(Mallios, 1998a). We will come back to it shortly when we formulate a finsheaf-theoretic version
of the Principle of General Covariance of GR in the gau.gﬂd to Pn



Finitary Spacetime Sheaves of Quantum Causal Sets 1919

respectively, are “incomparable,” in that one is not allowed to form linear combi-
nations thereof Alternatively, one may describe this in a more geometrical way
by saying that in a gauged space, such as the vector bandlgs6ckeler and
Schicker, 1990), there is no natural relation of distant parallelism or linear super-
position between the elements residing in its fibers. A “rule” that enables one to
compare vectors at different fiber spaces, thus it establishes some kind of relation
of distant parallelism or, linear algebraically speaking, “distant linear combine-
ability” in TM, is provided by the concept of connectibn(Mallios, 1998a). The
geometrical interpretation @, and one which shows an apparent dependence of
this concept on the background geometric spacetime maniidfdis as a par-

allel transporter of vectors along smooth curvedMnjoining x with x’. Then,
curvatureF, in the classical model for spacetime corresponding to the differential
manifold M, is geometrically conceived as the Wilson anholonomyDofvhen

the latter transports vectors parallely along smooth closed cu@/ddops) in
M—certainly a nonlocal conception of the actionof’

The second problem that we face is one of physical semantics: we want to
interpret the nonflat part, of Dy in a finitary causal way. In the classical curved
spacetime modé?, A, apart from its usual interpretation as the gravitational gauge
potential, may be physically interpreted as the smooth dynamically variable (field
of the) local causal connections between the events afthesmooth spacetime
regionX. Since the fibers of the curv@ (or the Minkowskian covectors in the
Q* sub-bundle o) are local isomorphs of flat Minkowski space, the action of the
spin-Lorentzian gravitational connection 1-fogron Minkowski vectors living in
TM's fibers, besides its geometrical interpretation as “parallel translation” above,

85For instance, one is not supposed to be able to compute their differerce which is the crucial
operation for defining the differential operatbin general.

86 And we say “apparent,” because, as we will see shortly, in our schigme- d,, + A, does not
depend essentially on the geometric base spacetime, since it derives locally from the very algebraic
structure of the stalks of the finsheaf of qausets (i.e., from the structure of the quantally and causally
interpreted incidence algebras). This is the most important lesson to be learned from the Abstract
Differential Geometry theory developed in (Mallios, 1998a,b), namelyZthdte main object with
which one can actually do Differential Geometry, is of an algebraic (i.e., analytic) nature and does
not depend on any sort of “ambient geometric space.” For instance, the two global (topological)
conditions used in the conventional Calculus on manifolds to establish the existefrcerofl,
namely, that the latter is a paracompact and Hausdorff topological space, are sufficient, but by
no means necessary. Such an independence is welcome from the point of view of both classical
and quantum gravity where the spacetime manifold, regarded as an inert geometrical background
base space, has shown to us its pathological, “unphysical nature” in the form of singularities and
the nonrenormalizable infinities that plague the field theories defined on it (Mallios, in press, in
preparation).

87In contradistinction to this classical geometric conception of curvature, in the sense that it depends
on the existence of spacetime loopsvnand that it is the effect of the action &f as the parallel
transporter of geometric entities (smooth tensor fields) along them, we will be able to give shortly
a purely local sort of curvatur#, stalk-wise in our gauged finsheaves of qausets.
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may be alternatively interpreted in a causal way as follows: point-wise on the
curve along which the vectors are transported, the transitive, inertial Minkowskian
causality— is preserved Equivalently put, ifx is a point in the curve and
v(X) C My is the value of a vector field at x,% the “coupling” A(x)[v(x)] may

be thought of as a local Lorentz transformation (i.e., an infinitesimal spacetime
isometry) ofv(x); hence, by definition, it preserves the local causal structure of the
curvedTM, namely, the Minkowski lightcone based at (or with origing M.

In this sense one may equivalently interpret the gravitational gauge conngction
as the dynamical field of local causality, as we noted in section 2. We adopt this
physical interpretation for our finitary,.

Now we come to the crucial point of the present paper that was briefly men-
tioned at the end of section 2 and in footnote 88 above concerning metric con-
nections. From a causal perspective, like the one we have adopted here, a sheaf
may be the “natural” or “proper” mathematical structure to model such (dynami-
cally variable) local causal connections suctdabecause of the following rather
heuristic argument which in a sense motivated us to study finsheaves of qausets
in the first place: by definition, a sheaf is a local homeomorphism (Bredon, 1967;
Mac Lane and Moerdijk, 1992; Mallios, 1998a; Raptis, 2000a), so that when one is
interested in the (dynamically varying) causal topology of spacetime like we are in
the present paper where dbg-finsheaf of qausets is supposed to be the “quantum
discretization” (Raptis and Zapatrin, 2000) of the local causal topology (i.e., the
causal connections between events) and its local symmetries of a bounded region
X of a curved smooth spacetime manifditi a sheaf preserves precisely the gen-
erating relations or germs of the local causal topology of the base space. But, in
our case, the latter are precisely the immediate causality (contiguity or covering)
relations—> in the causal sef, that are mapped by the sheaf (regarded as a local
homeomorphisng) to the germ relationg of the quantum causal Rota topology
of the qauset8, thus defining the finshe&, of qausets over the corresponding
causet.

Also, the adjoint sheaf,, it too regarded as a local homeomorphiim
preserves the generator (i.e., the generating relation or “local gesnof)the
guantum causal topology 6f,, thus it consists of local, finitary causal and quantal
versions of the orthochronous Lorentz grdup = SQ(1, 3). Altogether, a local
Ql-sectloﬁ0 of the G, -finsheafl, (Sn) associates, via the composmmn o S
of the two local homeomorphisms defining the finitary shs,afand its adjoint
group sheaf’,,, with a contiguous causal arron—> y in the causeE, a reticular

880ne may conceive in this local-causal sense the standard requirement in GR that “the connection
is compatible with the metric tensor fieg},” (i.e., thatD is a metric connection).

89Technically, a vector field is a cross-section of the vector bufiti¢Gockeler and Salcker, 1990;
Von Westenholz, 1981).

90The reader should note the arrow over the sub-sheaf spha# discrete 1-forms iV, which
again shows its causal interpretation, as well as its finite degree or energy of resolution.index
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Lorentzlocal (infinitesimal) transformation i f]x which, inturn, may be thought
of as “reticularly rotating” or *finitarily boosting” the quantal Minkowskian vectors
in the stalk pn][x 9 of Q (Fn) over the evenk. Thus we see how natural it is
to define a f|n|tary spin-Lorentzian connectioh as a IocaIQ1 section of the
G, -finsheaf Fn, Qn, On, L) = : M.

However, as we said earlier, since the latter is flat, it admits global sections
(Mallios, 1998a). Flatness means thét = 0 throughoutM, (Mallios, 1998a),
or equivalently, that “the connection is identically equal to the trivial constant zero
global Szl-sectlon of theGn-flnsheaf/\/ln " In our finitary causal context, we at-
tribute th|s to the constancy (i.e., the nondynamical character) and the transitivity
of the inertial Minkowskian causal connectiest in Fy, a property that is cer-
tainly nonlocal (Finkelstein, 1988; Raptis, 2000b)n fact, the “unphysicality”
of a crystalline rigid causality relation modeled after a transitive, and due to this,
global partial order, is already implicitly noted by Zeeman (1964) and explicitly
by Finkelstein (1988) who also emphasized the need for a dynamical finitary local
causal topology (i.e., effectively for a nontrivial connection on a causal finsheaf,
as propounded heré&.

Indeed, like in Finkelstein (1988, 1991), we regard the germ relatiaf the
local causal topology o, Or its finsheaB-imagep of Qn, as being dynamically
variable—a“quantum observable” (Raptis and Zapatrin, in press). This is achieved
by localizing or gauging the qauset finshe&f and its adjointZ,% which, in
turn, corresponds to implementing a nonzero (nonflat) dynamically varigble
valued ‘gauge connectiod, realized as a Ioczasrzl section of theG,-finsheaf
Pn = (Fn, Qn, Ln, Dn). Thus, A, effectively represents a finitary gravitational
dynamics of gausets.

SinceA, represents the dynamics of the gegrof the quantum causal topol-
ogy of the gqauset stalks (ﬂn, it is defined locally® thus purely algebraicalRf.
The detailed algebraic argument that leads to the expressiaA.fan terms of
p is left for (Raptis, 2001). For the present paper it suffices to give the usual
gauge-theoretic expression for the curvature associated Byth7, := D2 =
Dn A Dn = [Dn, Dp]*” (Baez and Muniain, 1994; Dimakis andulfer-Hoissen,
1999; Gickeler and Salcker, 1990; Mallios, 1998a) and note that it is defined
entirely locally-algebraically stalk-wise in the sheaf without reference to any

91see (Raptis, 2000a) for notation and analytical definition of stalks of the finsh&g&s.

925ee the CEP and its finitary formulation FEP in section 2.

933ee also opening quotation from (Finkelstein, 1991).

940f course, when one localizes or gauges qausets, it follows that their local quantum causal symme-
tries are gauged as well.

9That is to say, stalk-wise in the sheaf.

963ince the stalks are the causally and quantally interpreted incidence Rota algebras.

97Where “A” denotes Cartan’s exterior product and “[.,.]" “commutator.” It follows tif&f is a
¢;-valued section of th&2, sub-sheaf oy, as in the usual differential calculus on manifolds.
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loop-anholonomy with respect to an ambient smooth geometric base spacetime.
As we argued earlier, this is quite welcome from the point of view of quantum
gravity. 7, may be physically interpreted rather freely in our scheme as a finitary,
causal and quantal expression of Lorentzian gravity.

Now that we have mathematically defined and physically interpreted
(and its curvaturer,) on P, we give an alternative physical interpretation for it
more in line with the operational interpretation of finsheaves in (Raptis, 2000a),
whereby, the latter were regarded as “approximations of the continuous spacetime
observables.” So again, 18t be a bounded region in a curved smooth spacetime
manifold M on which A lives (in P). As in (Sorkin, 1991) the open sdiksin the
locally finite open covet/, of X were physically interpreted as “coarse acts of
localization (local determination) of the continuous topology carrieXIsypoint
events” which, in the finsheda®,(F,) of (Raptis, 2000a), translates to “coarse
acts of local determination of the continuous (i@%topological) spacetime ob-
servables® so similarly we lay outf, to “measure” or chart roughly the causal
topology and the causal symmetries of the bounded spacetime r¥ginrthe
gravitational spacetimb!.% Then, we organize our observations of the dynamics
of local quantum causality into the curve&d-finsheaf of gauset®, as described
above. InP,, we perceive as “gravitational gauge potentid’sthe g,-valued
Ql-sectionsA,,. .

So, in the manner that we described tngfbauof P, in sections 2-5, it
is straightforward to interpref,, as “equivalence classes of gravitational gauge
potentials” relative to our coarse and dynamically perturbing observatipioé
the spacetime’s causal topology. Equivalently, following verbatim the physical in-
terpretation of finsheaves in (Raptis, 200Q4)([x]) stands for a collection of
gravitational gauge potentials that are “indistinguishable” at the finite lewdl
resolution ofX into its point event$? “Indistinguishability” may be physically
interpreted here in a dynamical way as follows: the gravitational field is not per-
ceived as varying between any two events in the same equivalencexdlds [
Furthermore, and here is the operational weight that the sheaf-theoretic scheme
of ours carries, it is our coarse operations of determination of the dynamical local
quantum causal topology, which are organized iRt that are effectively en-
coded inA,, so that, by the end of the day, it is not the point eventX pker se

98Wwhich by definition preserve the local Euclidean manifold topologi of

99Following the terminology in Mallios (1998a), we call the elemedt®f U4, “coarse (or fuzzy)
local gauges,” since they stand for rough acts of measurement of the local struckure of

100Thys, we tacitly assume that the spacetime events are not only surrogate cardérpbysical
topology (Raptis, 2000a; Sorkin, 1991), but also of its other physically observable attributes—the
gravitational or “locality” field being the one in focus here.

101This interpretation is consistent with our FEP of section 2 which, in effect, held that in a finsheaf
over a causef, obtained by, as briefly described in sections 3 and 4, all the frames in the “fuzzy”
or “coarse stalksfzn([x]) over [x] are inertial (because “indistinguishable by gravity”) relative to
each other, so to speak.
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that carry information about the dynamics of (quantum) causality; rather, it is our
own dynamically perturbing observations of them that create!®itThen, the
general relativistic character of our sheaf-theoretic scheme may be summarized in
the following: the finitary gravitational connectidp, on P, is a sheaf morphism
(Mallios, 1998a), which means that the dynamics of local quantum causality is
Uq-independent after alP? This is the (fin)sheaf-theoretic version of the principle

of General Covariance of GR with a strong local-quantal fl&tfor.

6. DISCUSSION OF THE SOUNDNESS OFP,
AND OTHER RELEVANT ISSUES

_ Inthis last section of the paper we present four arguments that support that
Pn is a sound model of a finitary, causal and quantal version of Lorentzian gravity.

(@) The FEP of section2is satisfiedﬁ’ﬂ, since the latter’s stalI@l:n are local
isomorphs of a locally finite, causal and quantal version of Minkowski
space (sections 3 and 4). .

The FLRP of section 2 holds iA,, since the latter’s grouB,-stalks
are finitary, causal, and quantal versions of the orthochronous Lorentz
structure group. * of local causal symmetries of GR.

The FLP of section 2 is satisfied iR,, since the latter's gauset
stalks are sound models of local quantum causality (section 3 and (Raptis,
2000b)). _

The FLSP of section 2 holds iR,, since the qausets residing in its
stalks coherently superpose with each other (sections 3, 4, and (Raptis,
2000b)).

In section 2 we posited that a sound mathematical model of (the
kinematics of) a finitary curved quantum causal space should meet struc-
turally these four “physical axioms.” Indeed, the structurePafdoes
meet them.

(b) P,isanalgebraic modelforfinitary, local, and dynamically variable quan-
tum causality which inherits its operational meaning from the pragmatic

1025ee the active operational interpretation of dynamical local quantum causality at the end of section 4.
As it was shown in (Raptis, 2000a), it is not the point evargs sethat are the carriers of the
continuum'’s topology as assumed in (Sorkin, 1991), but the (sheaves of algebras of) continuous
observables that occupy this apparently existing continuum. There is no spapetiserather,
it is from the dynamical relations between (i.e., the algebraic structure of) the objects that inhabit
“it” that “its” properties are extracted (Mallios, 1998a, in press, in preparation; Raptis, in press).

103For a short discussion of this apparently paradoxical situation, namely, that our own coarse local
observationg4, create the dynamical local quantum causality whose dynamics is subsequently
expressed in 4,-invariant (i.e., gauge independentor “covariant”) way, see (c) in the next section.

104sinceD;, respects the linear quantum kinematical structure (i.e., the coherent quantum superposi-
tions of quasets) stalk-wise =
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and quantal interpretation given to quantum topological incidence alge-
bras in (Raptis and Zapatrin, 2000), hence also to their causal relatives
in (Raptis, 2000b}°® Moreover, from (Raptis and Zapatrin, 2000) it in-
herits its essentially alocal character, whereas, together with the physical
interpretation of finsheaves (of algebras) in (Raptis, 2000a), it manifests
its essential noncommitment to spacetime as an ether-like background
geometricalC>-smooth base point set manifold.

(c) The local structure of classical gravitational spacetime, namely, the event
and the space of Minkowskian directions tangent to it, arise only at
the operationally ideal limit of infinite localizatié#t of an inverse sys-
tem of P,s (Raptis, 2000a). The latter limit, yielding the classical gravi-
tational sheaf or bundl® in a manner analogous to how the sh86X)
of continuous functions on a topological spacetime manifold arises at
infinite refinement of topological finsheavggsimilar to our causaP,s
(Raptis, 2000a), may be physically interpreted as Bohr's Correspon-
dence Principle (Raptis and Zapatrin, 2000). This further supports the
guantal character @?,.

Allin all, putting together the physical interpretations of the theoret-
ical schemes proposed in (Raptis and Zapatrin, 2000, in press), (Raptis,
2000b), and (Raptis, 2000a) that are amalgamated into our riadet
the dynamics of finitary quantum causality as described in sections 3-5,
we may summarize the physical interpretationRafto the following:
it represents alocal, discrete, causal, and quantal operations of determi-
nation of the dynamics of causality and its symmetries in a bounded
region of a curved smooth spacetime manifold with the latter not ex-
isting in a physically significant sen&&, but only viewed as providing
a surrogate scaffolding on which we base (i.e., locally solder our own
operations of observing “it,” which are then suitably organized into al-
gebra finsheaves. This collective physical interpretatioPpfis well
in accord with the general philosophy of QT holding that inert, back-
ground, geometrical “state spaces” and their structures, such as space-
time and its causal structure, “dissolve away,” so that what remains and
is of physical significance, the “physically real” so to speak, is (the al-
gebraic mechanism of) our own actions of observing “it” (Finkelstein,
1996).

105gee also (Raptis and Zapatrin, in press).

106That is, at the operationally ideal situation of employment of an infinite power (or energy) to resolve
spacetime into its point events (Cole, 1972). As we explained in section 3, this is theoretically
implausible too due to the fundamental conflict of the principles of Equivalence and Uncertainty
on which gravity and the quantum are founded at energies (i.e., microscopic powers of resolution)
higher thanEp = ht;,1 ~ 109G eV—the natural cut-off of quantum gravity.

107Not being “physically real,” so to speak.
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(d)

In section 4 we stretched even further this “observer dependent phys-
ical reality” essence of qguantum mechanics to an “observation created
physical causality” with the introduction of the “quantum causal potential
relative to our coarse observations” observable which was subsequently
seen to be the dynamically variable entity represented by the finitary
connectionA, on P, only to find that a (fin)sheaf-theoretic version of
the principle of General Covariance of GR holds in our model, namely,
that dynamics is categorically formulated in terms of equations between
sheaf morphisms thus involving the connectiBp which is the main
finsheaf morphism i, (Mallios, 1998a). Hence, our mathematical ex-
pressions of “physical laws” are not observation depentféithis points
to the following seemingly paradoxical interpretation of our scheme: the
observer acts as a “law-maker” when she obsétvemnd as a “law-
seeker” when she communicates her observatirkhere is no conflict,
as Finkelstein convincingly argues in (1996). After all, such an apparently
conflicting “duality” may ultimately prove to be necessary for a genuine
synthesis of the quantum with relativity (Finkelstein, 1996)—a synthe-
sis which appears to be at the heart of the problem of quantum gravity
per se.

Causet theory (Bombelkt al, 1987; Sorkin, 1990a,b) addresses the
problem of “quantum gravity” in locally finite, causal, and to some ex-
tent, quantal termi&! from a nonoperational pseudo-realistic point of view
(Sorkin, 1995). On the other hand, Finkelstein’s Quantum Net Dynamics
(1988, 1989, 1991) and its subsequent generalization, Quantum Relativ-
ity Theory (1996), address the same problem in almost the same terms,
but from an “entirely operational*? point of view. Our finsheaf-theoretic
model for finitary and causal Lorentzian quantum gravity brings together
Finkelstein’s and Sorkin’s approaches under a “purely algebraic roof” and
to some extent vindicates their fundamental insight that the problem of
guantum gravity may be solved or, at least, be better understood, if it is for-
mulated as the dynamics of an atomistic local quantum causal topology.

108That is to say, physical laws até,-gauge independent of or “invariant under” (i.e., “covariant
with”) our coarse and dynamically perturbing measurements of the local observables of “spacetime”
(Mallios, 1998a, in press, in preparation).

109By establishing causal connections between the events that she observes.

110That is to say, when she “objectifies” her actions of determination of “it” to other observers by
organizing the coarse causal nexus she has perceived in “it” to structures (sheaves) so that the
dynamicsDj, of this local causal nexus (i.e., the dynamical local causal topology) is independent
of her “subjective” coarse measuremedtsn U4, of “it all.”

111For instance, a quantum dynamics for causets is sought after a covariant path integral or “sum over
causet histories” scenario (Sorkin, 1990a,b).

112 fact, “pragmatic.”
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Atleast, it certainly goes some way towards vindicating Einstein’s hunch,
that: “Perhaps the success of the Heisenberg method points to a purely
algebraic method of description of nature, that is to the elimination of
continuous functions from physicéEinstein, 1936), and it accords with
his more general and imperative intuition later on (Einstein, 1956), that:

... One can give good reasons why reality cannot at all be represented by
a continuous field. From the quantum phenomena it appears to follow with
certainty that a finite system of finite energy can be completely described
by a finite set of numbers (quantum numbers). This does not seem to be in
accordance with a continuum theory, and must lead to an attempt to find a
purely algebraic theory for the description of reality. But nobody knows how
to obtain the basis of such a theory.
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